
Kutztown University
Research Commons at Kutztown University
Computer Science and Information Technology
Faculty

Computer Science and Information Technology
Department

4-11-2015

Data Mining Temporal Work Patterns of
Programming Student Populations
Dale E. Parson
Kutztown University, parson@kutztown.edu

Lori Bogumil
Kutztown University of Pennsylvania, lbogu779@live.kutztown.edu

Allison Seidel
Kutztown University of Pennsylvania, aseid201@live.kutztown.edu

Follow this and additional works at: https://research.library.kutztown.edu/cisfaculty

Part of the Databases and Information Systems Commons

This Conference Proceeding is brought to you for free and open access by the Computer Science and Information Technology Department at Research
Commons at Kutztown University. It has been accepted for inclusion in Computer Science and Information Technology Faculty by an authorized
administrator of Research Commons at Kutztown University. For more information, please contact czerny@kutztown.edu,.

Recommended Citation
Proceedings of the 30th Annual Spring Conference of the Pennsylvania Computer and Information Science Educators (PACISE)
Edinboro University of PA, Edinboro, PA, April 10-11, 2015.

https://research.library.kutztown.edu?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cis?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:czerny@kutztown.edu,

DATA MINING TEMPORAL WORK PATTERNS OF PROGRAMMING
STUDENT POPULATIONS

Dale E. Parson, Lori Bogumil, Allison Seidel

Department of Computer Science and Information Technology, Kutztown University of PA
parson@kutztown.edu

ABSTRACT

This paper reports the second stage of a study of the
correlations between the temporal work patterns of
computer programming students and their success or
failure as measured by programming project assignment
grades and related metrics. The first stage confirmed the
importance for most students of getting an early start on a
programming project, and it also uncovered the fact that
some student groups perform well with late starts,
suggesting the likelihood that they engage in the
productive practice of active procrastination. The second
most important factor for success is the average length of
assignment work sessions. Session lengths from 60 to 120
minutes appear to be optimal for most students. Other
contributing factors include total time spent on a project
and working more day than night sessions. This second
stage more than doubles the amount of data collected and
analyzed. It finds that procrastination and session length
remain prominent, while secondary factors become
slightly less prominent. Its primary contribution is the
analysis of within-student patterns for students who
perform significantly better on some assignments than
others, finding that for these students, starting early and
maintaining appropriate work session lengths and times of
day correlate with better performance.

KEY WORDS
data mining, programming assessment, student
programming, time management.

1. Introduction

The work reported here is the second stage of a study
begun in 2013 and reported in 2014 [1,2]. The initial stage
collected 90 attributes of data including when, for how
long, how often, and with what magnitude of effort and
accomplishment, students engaged in work to complete
programming assignments. Most of the data collection
was automatic, participation was voluntary, and data from
auxiliary sources, including a questionnaire on conflicting
demands on time, complemented automatically collected
data. Analyses revealed that procrastination and
excessively brief work sessions were the main indicators
of problems for students with inadequate prior success in
earlier computer science courses.

Some students with successful track records knew when
they could afford late starts. We added four attributes to
the study in order to sort out students who could afford
late project starts from those who could not, namely,
number of overall undergraduate credits, undergraduate
grade point average, number of computer science
undergraduate credits, and computer science grade point
average. The latter attribute proved especially useful, but
not deterministic, in distinguishing successful from
unsuccessful procrastinators. We hope to use the data to
investigate the phenomenon of active procrastination in a
future study. Active procrastination is intentional,
constructive deferral of work, while passive
procrastination is destructive work avoidance. The two
leading theories are that active procrastinators are better
time managers, deferring project work until needed in
order to address competing tasks earlier [3], and that
active procrastination increases the degree of positive
stress or eustress, closely related to flow, forcing focused,
efficient, and pleasurable engagement of the cognitive
system [4]. One advantage of the current study over most
studies of active procrastination is that this study works
almost entirely with automatically collected, objective
data, while those studies work largely with subjective
surveys. However, the more immediate goal is to
construct semi-automated aids for at-risk students, a topic
appearing in the section on future work.

Distribution of work sessions across the day was a
contributing factor to success. Additional analysis
presented here indicates that working a greater percentage
of daytime than nighttime sessions yields beneficial
results for students whose performance varies
significantly across projects. Also, using a few marathon
sessions to attack complex problems does not work well
for most students, so the only way to increase the overall
work time without resorting to long sessions is to have
multiple sessions, necessitating distribution across the day
with breaks in between. The ability to distribute requires a
relatively early start in the project cycle. Otherwise, time
becomes short and the ability to schedule numerous work
sessions of productive length becomes impossible.

The initial stage of the study found that conflicting
demands on student time did not correlate strongly with

the degree of project success. Students used a short
questionnaire to report conflicting programming projects
from other courses as well as reporting exams in any
course. Data collection did not include time spent on jobs
or other extracurricular activities. Answers in the
questionnaire comprised the primary form of subjective
data in the study. They did not correlate well with student
performance, either in specific student subgroups or in the
student dataset as a whole. While task conflicts
undoubtedly affect some students’ performance, there was
no clear correlation. It is likely that appropriate
scheduling of programming work sessions by a student, as
measured and analyzed by the study, lessens the impact of
competing activities.

2. Related work

Edwards, et. al. have previously reported late starts in
programming projects as clearly associated with poorer
results on such projects [5]. That study utilized data from
three programming courses for over five years. It
confirmed results from earlier studies about the
correlation of earlier project starts with better rates of
project success. That study eliminated both consistently
well-performing students and consistently poorly-
performing students from the analysis in order to focus on
intra-student attributes that vary between successful and
unsuccessful projects. Portions of the current stage of the
present study also take that approach, as reported in a
section below. However, the present study mostly
investigates all students, with special attention to at-risk
students who perform poorly either part or all of the time.
Consistently well-performing students are also of interest
as they relate to active procrastination. Results of the
present study agree with the results of the cited study,
while detecting additional significant attributes of student
work habits that alter those basic results.

Edwards and Ly have reported on automating analysis of
the specific types of problems that occur in running
student programs [6]. That analysis differs in nature from
the current project, which focuses on correlations between
student work patterns and project success or failure, as
contrasted with specific types of project failure.

Mierle, et. al. examined student code repositories, based
on file modifications that appear in file change
submissions and log files [7]. They found a weak
correlation between normalized number of lines of code
per revision and student success in terms of final grade,
and no correlation with timing of student work. The
present study differs in nature by logging and analyzing
student work at a much finer temporal grain, that of
individual make actions within each student’s private
workspace. The present study uncovers more detailed
correlations.

The most recent related study examined confirms the
correlation of poor programming project results with late

project starts [8]. That study allowed student submission
of programs to additional, opaque automated tests (so-
called release tokens). It concluded that availability of
these tests might discourage students from writing their
own test cases, and might encourage procrastination
because students can count on additional available tests
no matter how late they start. The current project takes a
different approach to testing, modeled after the industrial
experience of the instructor. The instructor supplies test
cases, requires students to write additional test cases for
some projects, and uses additional test cases not available
to the students for grading. The latter sets of tests emulate
customer acceptance testing not available to software
providers. The present study collects data on successful
and unsuccessful test runs for instructor-supplied and
student-required testing, but it does not use a limited
number of opaque test runs as a variable. The current
study finds several attributes that correlate with project
success, in addition to start time.

3. Data Collection and Temporal Patterns

3.1 Data collection and preparation

This subsection gives an outline of the process for data
collection and extraction and the classes of data attributes
collected for the study. Readers interested in more details
of this process should consult the report of the initial stage
of the study [1].

GNU makefiles [9] supplied by the instructor automated
all three phases of compilation, testing, and deployment to
the instructor of student code in the study. A student types
make build for compilation, make test to run tests, and
make turnitin to bundle the assignment directory into a
compressed archive and send it to the instructor. Testing
automatically invokes make build to update any object
files whose source files are more recent due to coding
changes. Some projects require students to write
additional tests that are triggered by make test. Students
may run make turnitin multiple times when they decide
to over-write earlier submissions. The instructor’s
repository keeps only the most recent submission.

Each of these three make operations runs a data-collecting
script that, unlike most make operations, does not echo its
steps to the student’s terminal. The goal is to maximize
transparency of data collection in order to minimize
interference with student work habits. Data collection
consists of three steps. The first step captures the output
of the UNIX “ls –l” command. This output shows the
student project files, their sizes in bytes, and their most
recent modification dates and times. These data reveal
time, byte-size, and file-level locality of code changes.
The second step captures a copy of all student source
files. These data are useful in analysis of the number of
sources lines added, changed and deleted using the UNIX
diff utility. They would also be useful for a subsequent
study of classes of student bugs, since the files collected

by this step support reconstitution of each stage of
development of a student project. The third step bundles
the data of the first two steps into a compressed archive
with additional attributes embedded into the archive file
name. These attributes include the student ID, the date,
the time, and the type of the make action. The types
include start-of-build, completion-of-build, start-of-
test, completion-of-test, and turnitin-to-instructor, with
start-of-test automatically triggering start-of-build. It is
thus possible to observe both initiation and success or
failure of compilation and success or failure of testing as
distinct data attributes. Upon completion of archive
compression, the makefile in the student directory moves
the archive to a write-only directory in the instructor’s
UNIX account.

GNU make is available on the UNIX server system used
for development of non-graphical projects. For graphical
user interface (GUI) projects, many students worked on
their own machines. Since the study was for a multi-
section Java Programming course, with the Java Runtime
Environment installed on student machines, it was
straightforward for the instructor to supply a Java utility
to drive compilation, testing, and data collection on non-
UNIX student machines in a manner comparable to the
makefile. The only data not collected were the student
source files, in the interest of not overrunning available
space on student machines. It was still possible to
determine times and changes in file sizes in bytes from
the directory listings. Students eventually moved their
files back to their UNIX accounts for make turnitin. This
step moved archives collected on student machines to the
instructor’s collection directory.

Students also filled in a three-question text form
indicating number of programming projects started in
other courses during the project timeline, number of
programming projects due, and number of exams taken in
any course. As noted earlier, these data showed no
correlation with student success. The instructor also
counted student emails about assignments in two classes,
clued and clueless. Not surprisingly, the former
correlated with more successful projects and the latter
with less successful ones, but that correlation is trivially
obvious to an instructor during project development. The
study did not collect data about class attendance or
extracurricular activities. Students participating in the
study earned a 1% project point for permitting data
collection and another 1% for completing the short
survey. The IRB (Institutional Review Board) agreement
required the instructor to award similar points to students
choosing not to participate by invoking make optout
(which would shut off data collection) and answer
“optout” to survey questions. No students chose to opt
out; participation was 100%, and many students were
interested in the study results.

The most important class of data attributes analyzed is
time, including project start time, completion time, and

the time of every make action. Data extraction aggregated
each series of make actions with fewer than 60 minutes
between actions into a composite record for a work
session. In addition to compressing and thus reducing the
amount of data to be analyzed, creating aggregate work
session records supported analysis of temporal length of
work sessions, size of code changes during sessions,
number of compilation and testing tasks started and
completed during sessions, times of day of work sessions,
and times between work sessions. The study analyzed all
repetitive measures of time and project size changes in
terms of per-session mean, population standard deviation,
median, mode, minimum, and maximum. Data
preparation resulted in one flat tuple of attribute values
per student-project, with many attributes being statistical
summaries of session properties. Course-project-student
ID, overall project date-time period, student grade point
average and university credit data, and data from the
questionnaire also contributed attributes to each student-
project tuple.

3.2 High level analysis of project data

This subsection gives very high-level statistical results for
stage 2 of the study, based on the attribute selection
process from stage 1 of the study [1]. Software tools used
included custom Python scripts for data extraction and
statistical analysis, along with Excel spreadsheet graphs.
All data are for students including sophomores through
seniors in an elective Java Programming course that has
for a prerequisite the CS I-II sequence taught in C++. All
project work was individual homework; there were no
laboratory class sessions. There were 29 students with
111 student-project tuples of 91 attributes each in the
2013 stage 1 of the study, combined with two more
sections of students in 2014 to yield 64 students with 282
student-project tuples of 95 attributes each in this stage 2
of the study. All results reported here are from stage 2.

Graph 1: Project grade as a function of start time

Graph 1 shows the average project grade (attribute Gprj
on the Y axis) for students of four categories of incoming
computer science GPA (Cgpa all, <= 3.0, <= 2.5, and >=

3.0) as a function of the time between the start of a project
and the project deadline in hours (Jstr on the X axis).
Note that the Jstr value is cumulative in reading the graph
from left to right. For example, a Jstr value of 180 shows
all student-projects with project start times <= 180 hours
before the deadline, including all students to the left at
Jstr 12 through 108. This approach to graphing
eliminates localized peaks and troughs that often obscure
trends. There are 37 student-project measurements at the
left side of the Cgpa = all graph, 141 (half of all student-
project records) at the Jstr = 156 hours point, and all 282
student-project records at the right side.

The span of time is 14 days (maximum Jstr = 336 hours)
because most contributing projects had a length of 14
days. Phase 1 of the study confirmed the instructor’s
experience that most students in this course do not take
advantage of more than two weeks of available time. In
this dataset, all students are included in the Jstr = 336
average for Gprj at the right side of the graphs.

The detailed data show a 19% (~2 letter grades) spread
for Jstr range [12, 336] in the Cgpa <= 2.5 graph, and a
14% (~1.5 letter grade) spread in the Cgpa <= 3.0 graph.
There is a 7% grade spread for Cgpa >= 3.0, and a 14%
spread for the Cgpa all group (all students). Average
grades increase monotonically for all but the Cgpa >= 3.0
group. Clearly, the most at-risk population of students
with respect to computer science GPA take the biggest hit
from procrastination.

Graph 1 shows only averages; there are exceptions to
these. The left side of the Cgpa >= 3.0 graph illustrates a
sample of 15 of the total 152 student-project tuples of that
graph with Jstr <= 12 hours and an average grade of
91.2%. These are successful procrastinators, and probably
active procrastinators. In fact, eliminating their
contributions to the graph results in a 10% spread in Jstr
for Cgpa >= 3.0. These are definitely not at-risk students,
and therefore not the primary subpopulation of interest in
the current stage of the study. Nevertheless, they
constitute a significant and interesting subpopulation.

Graph 2: Project grade as a function of workdays

The current, second stage of this study extracted a related
set of curves that appear in Graph 2, average project grade
Gprj as a function of the number of hours Jfst in days on
which students actually worked on a project. The need for
Jfst became apparent after detailed visual inspection of
raw data following the initial report. Some students
copied assignments into their accounts, put in some
amount of work, and then left the projects sit untouched
for days. Jfst is simply Jstr – 24 hours for each calendar
day in which the project experienced no student make
actions. The curves are similar to those of Graph 1, with
similar Gprj ranges. Most significantly, all curves level
off at around 192 hours (8 days). This set of graphs does
not show procrastination in starting. Cramming all work
into one day early in the project cycle would give a Jfst
value of 24 or less, since all subsequent, non-work days
would subtract out. What this graph really shows is that
distributing work across up to 8 days leads to grade
improvements, after which there are diminishing returns.
There is slight growth in the actual Gprj values up
through Jfst = 336 for all except the Cgpa <= 2.5 group,
which is literally flat after 8 days. None of those students
worked more than 11 days.

Graph 2 student-project values at the left side of Cgpa >=
3.0 are the same student-projects as the successful
procrastinators of Graph 1. Their low Jfst work time took
place during the last hours of the project timeline.

Graph 3: Project grade as a function of session length

Graph 3 shows project grade Gprj as a function of
average length of a work session Mavg, again
accumulating student-project records going left to right,
where a session consists of multiple make actions with
fewer than 60 minutes between adjacent actions. For all
subgroups the minimum amount of time needed to
achieve good results is about 60 minutes, and results fall
off slightly after 105 to 120 minutes. Too little session
time appears to result in inadequate engagement with the
programming project, and too much may result in mild
fatigue for these groups of programmers. Clearly, the
decline is not as pronounced as the rise to 60-minute
sessions.

Cluster All data 0 1 2 3 4 5 6 7
Count 282 55 31 14 35 42 38 5 62
Count % 100.0% 19.5% 11.0% 5.0% 12.4% 14.9% 13.5% 1.8% 22.0%
Jstr 178.55 52.60 255.26 54.86 78.97 186.36 361.58 96.20 225.23
Jfst 91.40 33.40 108.16 8.57 50.86 82.93 205.58 72.20 113.35
Mavg 55.81 49.68 29.40 32.26 116.06 80.32 45.21 107.00 31.53
Mdev 44.52 29.91 30.85 25.29 57.49 85.12 50.17 19.79 32.35
Yavg 10229.25 10103.84 6191.93 17188.36 14658.20 6885.83 6573.48 75482.73 7530.67
Snum 5.36 3.20 7.06 2.93 2.77 7.31 8.84 1.40 5.29
Mtot 267.99 148.13 215.00 113.07 307.00 530.64 387.82 154.20 171.56
Cgpa 3.05 2.87 2.01 2.50 3.71 2.57 3.40 3.09 3.56
Gprj 0.92 0.95 0.94 0.19 0.98 0.87 1.03 0.95 1.00

Table 1: Simple K-means clusters for primary attributes that correlate with project grade Gprj

3.3 Detailed analysis of project data

The three statistical trends of Graphs 1 through 3 are the
initial findings of this stage of the study. However, since
they show cumulative averages, there are a lot of missing
details. This subsection delves into some of the details.

Table 1 shows a set of K-means clusters in the columns
that associate attributes in the rows that correlate strongly
with project grade Gprj as extracted using the Weka data
analysis toolkit [10,11]. The initial report describes the
process of primary attribute selection [1]. The following
list defines these attributes.

Jstr is deadline minus start time in hours.
Jfst is Jstr minus 24 for each non-work calendar day.
Mavg is the average number of minutes per work session.
Mdev is the sample standard deviation of Mavg.
Yavg is the average change in source code character
count (bytes) per session.
Snum is the total number of work sessions.
Mtot is the clustered total number of minutes worked.
Cgpa is the computer science grade point average.
Gprj is the project grade. Note that with two bonus points
for participating in the study, 1.02 is a “perfect score.”
Some projects also carried optional bonus points, 20% for
the final project, giving Gprj an upper bound of 1.22.

In the actual data Mtot = Mavg x Snum. Clustering
moves actual measurements to cluster centroids, hence the
slight discrepancy in Mtot values.

Cluster 2 shows that K-means clustering associates the
lowest Gprj value with the second-lowest values for Jstr
and Mavg, and the lowest for Jfst and Mtot. Jfst is
substantially lower than its value in the other clusters.
This cluster has the second-highest Yavg value, showing
that the worst performing student-projects crammed the
second highest magnitude of code changes per session
into around 3 very short sessions. The overall impression

for cluster 2 is one of trying to “get it over with” in as
little time as possible.

Cluster 0 has the lowest Jstr and second lowest Jfst
values, but its Gprj is 95%, 5 times that of cluster 2. The
Cgpa is somewhat higher for cluster 0, but most
significantly, Jfst is about 3.9 times greater than cluster 2.
Mavg is about 1.5 times greater (still on the low side),
and Mtot is about 1.3 times greater. Each of these two
attributes is a contributor to cluster 0’s higher Gprj, but
Jfst appears to be the primary attribute to correlate with
the massive increase in project grade.

Cluster 4 is an interesting case. It has Jstr and Jfst values
that approximate those of the “All data” column, but its
Gprj value is 5% lower, constituting the second-lowest
cluster grade. Its Mavg value of 80.32 appears to be well
into the “success zone” until we consider its Mdev of
85.12, the highest. Cluster 4 has extremely high variations
in session time, i.e., many extremely short sessions
averaged with a few marathon sessions in Mavg. It has a
low ratio of code size change in characters per session
(Yavg / Snum) of 942, but clusters 5 and 1 come in lower
for this metric at 743 and 876 characters respectively. The
telling attribute for cluster 4 is the highest total work
minutes Mtot of 530.64. This cluster has the lowest ratio
by far of coding changes per minute at (Yavg / Mtot) of
13. Students in this cluster are not working consistently in
sessions of 60 minutes or more and they are not
accomplishing as much coding per minute as students in
other clusters.

Cluster 1 is another case to consider. It has the lowest
Cgpa, the lowest Mavg session time of 29.4 minutes
(with a Mdev value that shows that some sessions meet or
exceed 60 minutes), and the lowest Yavg code changes
per session, and yet its Gprj value is 94%. What appear
to be helping these students are high Jstr and Jfst values,
i.e., lack of procrastination. They apply themselves in a
fairly high number of sessions, with an adequate number

of 60-minute-or-greater sessions, while starting early and
getting some work done on many days after starting.

Cluster 5 shows the greatest values for Jstr and Jfst
correlating with the greatest Gprj. Session minutes Mavg
are a little low, but the Mdev value that is greater than
Mavg and the substantially highest number of sessions
Snum of 8.84 show that these students are starting the
earliest, working consistently across days, working an
adequate number of minutes-per-session for an adequate
number of sessions.

Co-variation of Jstr and Jfst with Gprj as seen in Graphs
1 and 2 and Table 1 correlates with distributing work
across days. Other attributes that do not appear in Table 1
show average number of sessions centered during
different 4-hour intervals of the 24-hour day, e.g.,
midnight until 3:59 AM, 4 until 7:59 AM, and so on. A
linear regression formula derived by Weka [10, 11] for
the attributes of Table 1 plus these six 4-hour time-of-day
work periods is:

Gprj = 0.0007 * Jfst + 0.0012 * Mavg + 0.0088 * Snum
 + -0.0002 * Mtot + 0.0335 * S0003 + 0.0129 * S1215
 + 0.087 * Cgpa + 0.5166

The correlation coefficient of this formula is 0.35 with a
mean absolute error of 0.13, i.e., its “guesses” are about
35% accurate, with a mean error of 1.3 letter grade. Cgpa
carries the strongest weight of 0.087, with Jfst and Mavg
contributing something (but not a lot). The small negative
weight for Mtot corrects for small over-contributions of
Mavg and Snum, noting that Mtot = Mavg x Snum.
What is interesting here is that S0003, the total number of
sessions centered between midnight and 3:59 AM, and
S1215, the total number of sessions centered between
noon and 3:59 PM, contribute the second and third largest
weights, weights that are significant fractions of Cgpa’s.
Weka does not extract weights for other 4-hour intervals,
but those intervals are in the data used in the analysis that
extracts this regression formula. Those intervals
apparently do not contribute deterministic correlations
with Gprj.

The instructor and a student collaborator in this study
have been debating the significance of the time-of-day
numbers for some time. Time-of-day contributions show
up as significant in other analyses, but they do not show
up in exactly this way. For example, one analysis showed
that students who worked consistently only between 8 PM
and midnight tended to perform poorly. That conclusion
would agree with a conclusion about the importance of
working in the early AM and early PM hours, but other
analyses do not pin Gprj correlations to exact working
hours.

Our current conclusion is that, in addition to distributing
work sessions across multiple days as indicated by
relatively high, co-varying Jstr, Jfst values, distributing

work sessions across multiple times of the day, and
having at least half of those work sessions be at least 60
minutes in duration, is better than attempting a large
amount of work during a few sessions in a few days.
Cramming work into a few days or a few sessions per day
is not an effective strategy for programming for most
students. That statement may seem like common sense to
most computer science instructors. The objective data
examined to this point confirm it.

Cluster 3 13
Count 22 18
Count % 7.8% 6.4%
Jstr 47.41 64.33
Jfst 37.59 45.67
Mavg 132.49 114.72
Mdev 38.90 101.41
Yavg 18985.54 8256.90
Snum 1.77 4.61
Mtot 235.86 505.94
Cgpa 3.68 2.56
Gprj .98 .76

Table 2: Simple K-means clusters with procrastination

Table 2 represents a brief attempt to address the topic of
active procrastination. It comes from the same dataset as
Table 1, this time partitioned into 16 clusters. Table 2
elides six time-of-day attributes for work sessions that
contribute to cluster formation, because these attributes
show no discernable patterns. The two clusters in Table 2
have the second and third lowest values for Jfst, with the
lowest Jfst cluster (not shown) failing abysmally. The key
distinction between the more successful procrastinators
from cluster 3 in Table 2 compared to cluster 13 is the
higher Cgpa. Cluster 13 students work more hours across
more sessions with less success than cluster 3 students.
Students in both of these clusters are cramming, but
cluster 13 students are doing so less effectively. The
ability to procrastinate successfully typically correlates
with a high computer science GPA, but a high Cgpa does
not guarantee success in procrastination. We have not yet
found attributes that distinguish the successful
procrastinators among students with high Cgpa values. It
is an established observation, however, that at-risk
students with lower Cgpa values usually make poorly
performing procrastinators.

Other statistical analysis tools within Weka [10,11]
including decision trees, model trees (decision trees with
linear regression formulae at the leaves), and Bayesian
correlation tables give similar results for important
attributes to those presented here. A J48 decision tree [11]
that considers only Jfst, Mavg, Cgpa and Gprj
accurately predicts Gprj for 70.9% of the student-project
tuples of Tables 1 and 2, with a mean absolute error of
0.14, about 1.4 letter grade. Adding a few attributes
lowers this error to 0.12. This is the most accurate

predictor we have achieved to date, but the structure of
the decision tree is too big to fit into a paper. It is filled
with little local pockets of behavior that have as much to
do with the details of our dataset and particular students
as with general trends. The overall trends in the decision
tree, however, reflect those of the graphs, tables, and
linear regression formula appearing above.

3.4 Within-student analysis for students with large
grade variance

This section reports an entirely new portion of the study
inspired in part by Edwards, et. al. [5]. It considers
student-project tuples only for students with a project
grade Gprj spread of at least 20% between their best and
worst project grades. Different students occupy different
overall grading bands, but each shares the fact that the
difference between his or her best and worst Gprj is at
least 0.2. This section introduces one new attribute,
GprjMy, which is the ratio of a student-project grade to
that student’s best grade. A GprjMy value of 1.0
indicates that student’s best Gprj grade, whatever it may
be. The goal of this part of the study is to understand what
students who perform better in some cases than others do
differently in those sets of cases.

Graphs 4 through 6 are the GprjMy counterparts to the
Gprj Graphs 1 through 3 at the start of this paper. Graph
5 irons out the noisy fluctuations of Graph 4 that come
about because of various distributions of skipped
available workdays after starting a project. Graph 5 levels
out at about Jfst <= 7 days (168 hours), one day earlier
than Graph 2 for these populations of grade-varying
students. Otherwise, the overall trends, including
successful procrastination for some Cgpa >= 3.0 students,
remain the same.

Graph 4: GprjMy as a function of start time

In Graph 6, all four curves peak at an Mavg value of 105
minutes per session, at the upper end of the 60 to 120
minute range, remaining fairly level thereafter. Students
with substantially varying grades per project should plan
to spend an average of around 105 minutes per work
session to achieve best results.

Graph 5: GprjMy as a function of workdays

Graph 6: GprjMy as a function of session length

Cluster All data 0 1 2 3
Count 116 29 18 26 43
Count% 100% 25.00% 15.52% 22.41% 37.07%
Jstr 152.26 293.62 69.67 63.81 144.98
Jfst 71.98 127.28 44.33 23.19 75.77
Mavg 56.78 51.82 118.92 27.40 51.87
Mdev 50.64 55.83 110.71 21.33 39.73
Yavg 9036.18 5351.37 10184.80 13526.58 8325.34
Snum 5.03 8.48 4.17 3.08 4.26
Mtot 268.83 440.17 471.83 85.77 178.98
Cgpa 2.79 2.49 2.64 2.31 3.34
GprjMy 0.82 0.86 0.76 0.65 0.92

Table 3: Clusters for students with varying Gprj

Table 3 gives condensed, 4-cluster Simple K-Means
clusters for students whose Gprj grades vary 20% or
more between projects. The average, “all data” cluster
shows an average GprjMy performance of 82% of a
student-project’s best Gprj grade.

Cluster 2 with the worst intra-student performance
correlates with the lowest values in the table for Jstr, Jfst,
Mavg, Snum, Mtot and Cgpa as defined in the previous
subsection. For this cluster and clusters 0 and 1 (Cgpa <
2.65), Yavg, the average number of source code
characters modified per session, correlates negatively
with GprjMy. Procrastination, cramming, and working

excessively short sessions all serve to hurt students with
lower Cgpa values the most.

Cluster 3 with the best intra-student GprjMy correlates
with the lowest Mdev / Mavg ratio (i.e., the lowest
variation in a fairly substantial average session time) and
the second-highest Jstr and Jfst. The implication is that
maintaining consistent work session times, starting early,
and distributing work across days can help to raise Gprj
within a semester and therefore Cgpa across semesters.

Cluster All data 0 1 2 3
Count 116 29 30 51 6
Count% 100.00% 25.00% 25.86% 43.97% 5.17%
Jstr 152.26 238.21 260.87 43.59 117.50
Jfst 71.98 126.48 105.67 22.41 61.50
Mavg 56.78 51.71 51.77 63.61 48.25
Mdev 50.64 55.53 53.04 42.78 81.87
Yavg 9036.18 7691.54 5665.92 12394.23 3843.15
Snum 5.03 5.69 7.73 3.00 5.67
Mtot 268.83 273.79 397.73 187.45 292.00
S0003 0.28 0.21 0.33 0.29 0.17
S0407 0.05 0.00 0.00 0.00 1.00
S0811 0.52 1.10 0.50 0.22 0.33
S1215 1.41 1.97 1.77 0.80 2.00
S1619 1.40 1.59 2.40 0.67 1.67
S2023 1.39 0.83 2.73 1.02 0.50
S00dev 0.63 0.77 1.16 0.39 0.75
night 1.72 1.03 3.07 1.31 1.67
day 3.32 4.66 4.67 1.69 4.00
n/ses 0.34 0.18 0.40 0.44 0.29
Cgpa 2.79 3.38 2.27 2.73 3.06
GprjMy 0.82 0.93 0.86 0.75 0.75

Table 4: Clusters for students with time-of-day
distributions with varying Gprj

Table 4 reorganizes the dataset of this section into four
clusters that include the S003 (00:00 through 3:59) to
S2023 (20:00 through 23:59) attributes showing number
of work sessions centered in six 4-hour time periods of
the day. Derived attributes include S00dev, which is the
sample standard deviation of S003 through S2023, night,
which is the sum of S003, S0407 and S2023 for its
column, day, which is the sum of S0811, S1215 and
S1619 for its column, and ratio n/ses, which is the
percentage of night work, i.e., night / (night + day).
Some of the derived attribute values show a unit rounding
error in the least significant digit because of rounding of
their dependent attributes to 2 fractional digits for display
purposes. The underlying, double precision calculations
are accurate to approximately 15 decimal digits.

Student-projects in cluster 0 achieve 93% of intra-student
potential (GprjMy of 100% being every student’s top
score in this dataset). Cluster 0 has the highest Jfst value
and a substantial Mavg value in Table 4, but the attribute
of interest here is n/ses, the percentage of night work
sessions, which is by far the lowest at 18%. When
performing their best in terms of GprjMy, students work

mostly during the day. Clusters 1 through 3 have lower
Jfst values – they do not distribute their work across days
to the degree that cluster 0 does – and they have higher
n/ses percentages – they do more of their work at night. It
appears from this analysis that distribution of work
session time in terms of minimizing S00dev is not as
important as performing most work between 8 AM and 8
PM. Cluster 3 with the second-highest Cgpa and second-
lowest n/ses percentage also has the lowest Mavg session
time and the second lowest Jstr and Jfst values. Its
GprjMy results suffer as a result of procrastination and
extremely short work sessions.

4. Conclusions and Future Work

Phase 2 of this study as reported here adds several
important aspects to phase 1 [1,2]. It more than doubles
the number of student-project tuples, and it considers
intra-student performance of students against their own
best project scores for students with variations from
highest to lowest project grade of 20% or more. The
primary goal is to find ways to assist at-risk students in
improving performance in computer programming
projects.

x Procrastination in starting a programming project

hurts performance. Likely reasons include inability to
go to the instructor for help, inability to distribute
work evenly across days (avoiding cramming in the
last few project days), and inability to schedule
around the conflicting demands of other courses by
leaving too few days in which to perform useful
scheduling of workdays.

x Skipping multiple workdays after starting can hurt
performance. Eight actual workdays is a minimum
for students of various computer science GPA levels
to reach their respective potentials.

x Working fewer than about 60 minutes per work
session can hurt performance. Some students can get
by with 50-minute work sessions, but students with
varying degrees of project success tend to do better in
those projects in which they work at the upper end of
the [60, 120] minute range. Increasing work session
length beyond 2 hours leads to diminishing returns,
especially when it combines with procrastination. It
then takes the form of cramming work into the last
few days of a project period.

x Distributing work across multiple sessions during a
day, rather than cramming all work into one or two
sessions, helps performance. Waiting until the last
day or two of a project eliminates the possibility of
intentionally distributing work across the day.

x For students with worst-to-best project grade
differentials greater than 20%, no more than about
20% of the work should occur between 8 PM and 8
AM (night). Student-projects who have about 80% of
their work between 8 AM and 8 PM (day) outperform
other student-projects in the intra-student portion of

the study that measures each student-project’s
performance against that student’s best performance
in terms of project grade.

The second year of the study also collected and analyzed
data from a junior-to-senior Programming Languages
course taught using Python for assignments. The results
of the analysis on that limited data set do not appear in
this report because the student population differed
substantially from students in the Java Programming
course examined here. There was only one at-risk student
who had problems completing assignments successfully.
In fact, the CS II course that uses C++ eliminates many
at-risk students before they get an opportunity to take the
Java Programming course. It is the authors’ conclusion
that the CS II course would be the best place to continue
data analysis and to apply experimental tools for assisting
at-risk students.

Future work includes using data visualization tools to
attempt to find patterns that remain elusive. Out best
attempts are about 71% accurate in predicting student
performance as a function of the attributes discussed, with
an average error of about 1.4 grade letter. We are hoping
that data visualization will help us to notice more patterns
that we can then explore.

The plan for assisting at-risk students is to conduct a
study that compares three alternative approaches: 1)
construct an email-based “automated nag” that detects
problems in work patterns during project timelines and
then sends email messages to students advising them on
how to change behaviors in order to improve likelihood of
project success; 2) construct an interactive graphical
computer game similar to Snakes and Ladders, driven by
incremental, automatic data collection, that mirrors each
student’s improvement or decline in projected project
score as a function of attributes; student’s could observe
their own projected success during a project cycle and
compare them with anonymous classmates; 3) do nothing
(control group). We would rotate students among each of
the three approaches in different projects, and measure
effect as indicated by participation versus lack of
participation by the students. Students like to play on-line
graphical games, and we conjecture that they would
improve their work habits just to see their graphical
avatars climb ladders. The instructor is awaiting an
appropriate programming course in which to apply these
techniques.

Investigation directed at the phenomenon of active
procrastination is a final area for future work. Almost
every research project into active procrastination uses
subjective surveys. The present study uses concrete data
collected by automated software compilation and testing.
If we can figure out ways to use our datasets to
investigate active procrastination, we may be able to
make concrete advances in that area.

References:

[1] Anonymous, “Mining Student Time Management
Patterns in Programming Projects,” Proceedings of
FECS'14: 2014 Intl. Conf. on Frontiers in CS & CE
Education, Las Vegas, NV, July 21 - 24, 2012. The paper
is available at ANONYMOUS_URL.

[2] Anonymous, “Using Weka to Mine Temporal Work
Patterns of Programming Students,” tutorial at FECS'14:
2014 Intl. Conf. on Frontiers in Computer Science &
Computer Engineering Education, Las Vegas, NV, July
22, 2-3 PM.

[3] Angela H. C. Chu and Jin N. Choi, “Rethinking
Procrastination: Positive Effects of ‘Active’
Procrastination Behavior on Attitudes and Performance,”
The Journal of Social Psychology, 2005, 145(3), p. 245-
264.

[4] E. Kim and E. H. Seo, “The Relationship of Flow and
Self-regulated Learning to Active Procrastination,” Social
Behavior and Personality, 2013, 41(7), p. 1099-1114.

[5] Edwards, Snyder, Pérez-Quiñones, Allevato, Kim and
Tretola, “Comparing Effective and Ineffective Behaviors
of Student Programmers”, Proceedings of ICER '09:
International Computing Education Research Workshop,
Berkeley, CA, August 2009.

[6] Edwards and Ly, “Mining the Data in Programming
Assignments for Educational Research”, Proceedings of
the International Conference on Education and
Information Systems: Technologies and Applications
(EISTA'07), Orlando, FL, July 12-15, 2007.

[7] Mierle, Laven, Roweis and Wilson, “Mining Student
CVS Repositories for Performance Indicators”,
Proceedings of the 2005 International Workshop on
Mining Software Repositories, St. Louis, May, 2005.

[8] Spacco, Fossati, Stamper and Rivers, “Towards
Improving Programming Habits to Create Better
Computer Science Course Outcomes”, Proceedings of
ITiCSE 2013, the 18th Annual Conference on Innovation
and Technology in Computer Science Education,
Canterbury, UK, July 1-3, 2013.

[9] Free Software Foundation, GNU Make home page,
http://www.gnu.org/software/make/, February 2015.

[10] Machine Learning Group at the University of
Waikato, “Weka 3: Data Mining Software in Java”,
http://www.cs.waikato.ac.nz/ml/weka/, February 2015.

[11] Witten, Frank and Hall, Data Mining: Practical
Machine Learning Tools and Techniques, Third Edition,
Morgan Kaufmann, 2011.

	Kutztown University
	Research Commons at Kutztown University
	4-11-2015

	Data Mining Temporal Work Patterns of Programming Student Populations
	Dale E. Parson
	Lori Bogumil
	Allison Seidel
	Recommended Citation

	ENTER TITLE HERE (14-POINT TYPE SIZE, UPPERCASE, BOLD AND CENTERED OVER TWO COLUMNS)

