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Abstract

Two-Player Graph Pebbling is an extension of graph pebbling. Players Mover and
Defender use pebbling moves, the act of removing two pebbles from one vertex and
placing one pebble on an adjacent vertex, to win. If a specified vertex has a pebble on
it, then Mover wins. If a specified vertex is pebble-free and there are no more valid
pebbling moves, then Defender wins. The two-player pebbling number of a graph G,
η(G), is the minimum m such that for every arrangement of m pebbles and for any
specified vertex, Mover can win. We specify the winning player for most powers of a
path.
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1 Introduction
In this manuscript, we will let G represent simple connected graphs on n vertices. We define
the power of a graph. The distance from any two vertices u, v ∈ V (G) is the length of the
shortest path connecting u and v. The diameter of a graph G is the maximum distance over
every pair of vertices in G. The results described relate to the power of a graph.

Definition 1.1. The kth power of a graph, Gk is the graph with vertex set V (Gk) = V (G)
and edge set E(Gk) = {uv | dG(u, v) ≤ k}.

In traditional graph pebbling, as defined by Chung [2], we define graph pebbling terms.

Definition 1.2. For any graph G, a configuration C is an arrangement of pebbles to the
vertices of G with C(v) as the number of pebbles on vertex v. We denote |C| to be the size
of the configuration, i.e. the number of pebbles on the graph.

Definition 1.3. A pebbling move is a function between two configurations, f : C → C ′, in
which

• there exists an edge, uv, such that C ′(u) = C(u)− 2 and C ′(v) = C(v) + 1, and

• C ′(x) = C(x), ∀x 6= u, v.

In other words, a pebbling move removes two pebbles from one vertex and places one pebble
on an adjacent vertex. A consequence of a pebbling move is that the new configuration C ′

and the previous configuration C have the relationship |C ′| = |C|−1. If a vertex has at least
one pebble on it, we say the vertex is pebbled. If a vertex has no pebbles on it, we say it is
unpebbled or pebble-free. In graph pebbling a single player uses a sequence of pebbling moves
in order to place a pebble on a goal vertex, or root. If a configuration C yields a sequence of
pebbling moves in which a pebble can be placed on the root, then we say the configuration
C is r-solvable. We can now define the pebbling number of a graph.

Definition 1.4. For any graph G and a given choice of root r, we define π(G, r), the rooted
pebbling number, to be the smallest value m such that every configuration C, with |C| ≥ m,
is r-solvable. The pebbling number of a graph G is π(G) = max

r∈V (G)
(π(G, r)).

In [3], graph pebbling was extended to a two-player game with players Mover and Defender.
The game evolves over rounds, with each player using pebbling moves on their turn. In each
round, Mover’s turn is first, with Defender following. Mover wins if they place a pebble on
the root. Defender wins if there are no valid pebbling moves and the root is pebble-free. If a
player makes a pebbling move from a vertex u to a vertex v, we say the player pebbles from
u to v. In this variation, there are two rules.

1. Each player must take their turn.

2. If Mover pebbles from vertex u to vertex v, then Defender cannot pebble from v to u
on their next turn.



Communications on Number Theory and Combinatorial Theory 4 (2023), Article 1 3

In [4], a variation of Two-Player Pebbling was considered without rule 2, however this lead
to severely restricting the graphs for which Mover could win. Also in [4], for a given graph
G and choice of root r, a configuration C is Mover-win if Mover has a sequence of pebbling
moves which place a pebble on the root, regardless of the pebbling moves made by Defender.
If no sequence of pebbling moves exists for which Mover wins, then the configuration is
Defender-win. As in classical pebbling, the two-player pebbling number is defined.

Definition 1.5. For any graph G and a given root r, the rooted two-player pebbling number,
η(G, r), is the minimum number m such that any configuration C with |C| ≥ m, C is Mover-
win. If for a graph G, a root r, and arbitrarily large m, there exists a configuration C ′ of
size at least m, for which C ′ is Defender-win, then η(G, r) = ∞. The two-player pebbling
number is η(G) = max

r∈V
{η(G, r)}.

We note a sufficient condition for infinite two-player pebbling number shown in [3].

Theorem 1.6 ([3]). For a graph G, let S be a cut set of G. Label the components of G− S
as G0, G1, . . . Gk with r ∈ G0. If for every v ∈ S, |N(v) − V (G0) − S| ≥ 2 and for every
x ∈ N(v)− V (G0)− S, |N(x)− S| ≥ 2, then η(G) = ∞.

If an initial configuration has two pebbles on any vertex in the neighborhood of r, then
Mover can pebble to r and win. So, we say a non-trivial configuration on the vertices of G
will have 0 or 1 pebbles on vertices in the neighborhood of r.

We note select results for π(G) and η(G).

Fact 1.7 ([6]). For any graph G, η(G) ≥ π(G).

Proposition 1.8 ([3]). If deg(r) = |V (G)| − 1, then η(G, r) = |V (G)|.

Corollary 1.9 ([3]). For n ≥ 2, we have η(Kn) = n.

Theorem 1.10 ([4]). For n ≥ 4, we have 2n−1 ≤ η(Pn) ≤
3

2
· 2n−1 − n.

2 The Powers of Paths, P k
n

We move on to look at Two-Player Pebbling on the kth power of paths, P k
n .

Definition 2.1. The kth power of a graph, Gk is the graph with vertex set V (Gk) = V (G)
and edge set E(Gk) = {uv | dG(u, v) ≤ k}.

There is an upper limit when raising a graph to a power. The following fact describes the
limit.

Fact 2.2. If diam(G) = d, then Gd is complete.

In light of Fact 2.2, we restrict our attention for k in Gk to be k ≤ diam(G). Also, we notice
that P 1

n is just a path on n vertices; the two-player pebbling number of Pn is covered in [4].
Hence, we will consider k ∈ {2, 3, . . . , n− 2} when dealing with P k

n .

First, we see the classical pebbling value for P 2
n , P 3

n , P 4
n , and P k

n for all k ≤ n− 2.
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Theorem 2.3 ([7]). Let 0 ≤ r ≤ 1. Then π(P 2
2k+r) = 2k + r.

Theorem 2.4 ([5]). If 1 ≤ n ≤ 7, then π(P 3
n) = n. For n ≥ 8,

π(P 3
n) =


2bn/3c + 1 if n ≡ 0 (mod 3);

2bn/3c + 2 if n ≡ 1 (mod 3);

2bn/3c+1 if n ≡ 2 (mod 3).

Theorem 2.5 ([6]). If 1 ≤ n ≤ 13, then π(P 4
n) = n. For n ≥ 14, we have π(P 4

n) =
2d(n−1)/4e + r with 0 ≤ r ≤ 3 and n− 2 ≡ r (mod 4).

Theorem 2.6 ([1]). For 2 ≤ k ≤ n − 2, we have π(P k
n ) = max{n, 2d + n − 2 − k(d − 1)}

with d = diam(P k
n ).

Path powers provide insight into the sufficient condition the graph structure which yields
Defender-win configurations. Specifically, for P k

n it is straightforward to check that there
is no cut set S satisfying the sufficient conditions of Theorem 1.6. For k ≤ n − 4, the set
S = {v2, . . . , vk+2} with G0 = {v1} nearly satisfies the conditions as does any set with k + 1
consecutive vertices. The exception is that v2 has only one neighbor outside of S ∪ {G0},
i.e., only one neighbor in {vk+3, . . . , vn}. All other vertices in S have at least two neighbors
in this set.

We will first cover the cases η(P k
n ) = ∞ when n ≥ 7 and 2 ≤ k ≤ n − 5 in Subsection 2.1.

The elementary cases in which the graph is complete or missing one edge, η(P n−1
n ) = n for

n ≥ 2 and η(P n−2
n ) = 2n− 2 for n ≥ 3 are covered in Subsection 2.2. In Subsection 2.3, we

show for n ≥ 9, η(P n−3
n ) ≤ 3n−5 and in Subsection 2.4 we show for n ≥ 5, η(P n−4

n ) ≤ 3n+5.

2.1 Infinite Two-Player Pebbling Number
Theorem 2.7. Let n ≥ 7. Then, we have η(P k

n ) = ∞ whenever 2 ≤ k ≤ n− 5.

Proof. We show that η(P k
n , v1) = ∞ when 2 ≤ k ≤ n−5. Hence η(P k

n ) = ∞ for 2 ≤ k ≤ n−5.
Consider any configuration with t pebbles distributed on T = {vk+3, vk+4, . . . , vn} and no
pebbles on {v1, v2, . . . , vk+2}. We will show that Defender has a winning strategy on this
configuration, establishing the result.

The strategy for Defender will be to play so that at the end of its turn C(v1) = 0, C(v) ∈
{0, 1} for v ∈ S = {v2, . . . , vk+1}, C(vk+2) ∈ {0, 1, 2} and if C(vk+2) = 2 then C(v) = 0 for
some v ∈ S. Since C(v) < 2 for v ∈ N(v1) = S on Mover’s turn, Mover can never place
a pebble on the root. As described in the moves below Defender is never forced to place a
pebble on the root. Thus, eventually no moves remain and Defender wins.

We will describe four cases that cover all possibilities for plays made by Mover and describe
Defender’s response to maintain the condition.
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Case 1: If the condition still holds after Mover plays, then, as each vertex in T has
at least two neighbors in T , Defender can play to a vertex in T and maintain the
condition or no moves remain and Defender wins.

Case 2: If C(vk+2) ∈ {1, 2} and Mover places a second or third pebble on vk+2 then
as vk+2 has at least 2 neighbors in T , Defender can play from v2 to T leaving fewer
than 2 pebbles on v2. There is no change in S so the condition still holds.

Case 3: If C(vk+2) = 2 initially and Mover places a second pebble on a vertex vi
in S then, as S is a clique, the condition implies that Defender can play from vi to
some pebble-free vertex vj in S. After Defender moves C(vi) = 0, C(vj) = 1 and
C(vk+2) is either 0 or 2, so the condition still holds.

Case 4: If C(vk+2) ∈ {0, 1} initially and Mover places a second pebble on a vertex
vi in S, note that Mover could not have played from vk+2. Thus Defender can
play from vi to vk+2. After Defender moves C(vi) = 0 and C(vk+2) ∈ {1, 2} so the
condition still holds. (Mover might be able to play to T and maintain the condition
with fewer pebbles on vk+2 but this is not necessary for the strategy to succeed.)

From the last paragraph of Theorem 2.7, it might seem that a simpler strategy for Defender
would be to also maintain C(vk+2) < 2 and avoid the extra condition when C(vk+2) = 2.
This is not possible as Mover could place 1 pebble on each vertex in S ∪ {vk+2} and then
play from vk+3 to v3. In this case Defender cannot play from v3 back to vk+3 so must place
a second pebble on vk+2 to avoid placing a second pebble on N(v1) and allowing Mover to
win. Notice that this provides a hint for a winning strategy for Mover on P n−4

n .

Corollary 2.8. If Pn is the path v1, v2, . . . , vn, then η(P k
n , vj) = ∞ when 2 ≤ k ≤ j − 5 or

2 ≤ k ≤ n− j − 4.

2.2 P n−1
n and P n−2

n

We next cover two elementary cases in which Mover has a winning strategy. For k = n− 1,
P k
n is a complete graph so we get the following using Corollary 1.9.

Fact 2.9. If k ≥ n− 1, then η(P k
n ) = η(Kn) = n.

Now, we move on to k = n− 2. Note that P n−2
n = Kn − e for e = v1vn.

Theorem 2.10. If n ≥ 3, then η(P n−2
n ) = 2n− 2.

Proof. Note that P n−2
n = Kn−e for e = v1vn. If the root r is not v1 or vn then η(P n−2

n , r) = n
by Proposition 1.8. When n = 3 we have P 1

3 = P3. It is straightforward to check that
η(P3) = 4.
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Suppose n ≥ 4. Let S = {v2, . . . , vn−1}.

We first show that η(P n−2
n , v1) > 2n − 3 by describing a configuration with 2n − 3 pebbles

for which Defender has a winning strategy. Place 2n − 3 pebbles on vn. There are initially
n−2 possible pebbling moves from vn. If Mover places a second pebble on a vertex in S then
Defender pebbles from that vertex to an unpebbled vertex in S. Otherwise Defender pebbles
from vn to an unpebbled vertex in S. This will decrease the number of pebbling moves from
vn by at least 1. As there are n − 2 pebbling moves from vn and n − 2 pebble-free vertices
in S, there will always be a pebble-free vertex for Defender to pebble to. After n− 2 moves
every vertex has at most 1 pebble and Defender wins.

To show η(P n−2
n , v1) ≤ 2n−2 we describe a winning strategy for Mover for all configurations

with at least 2n− 2 pebbles. Consider any configuration with at least 2n− 2 pebbles. If any
vertex in S has at least 2 pebbles Mover wins on its first move. So assume that s vertices of
S are unpebbled, n− 2− s have 1 pebble, and C(vn) ≥ 2n− s. There are n− dse pebbling
moves from vn. If Defender ever places a second pebble on a vertex of S, Mover can pebble to
the root and win. Otherwise, Mover pebbles to an unpebbled vertex in S. This will decease
the number of pebble-free vertices in S by at least 1 each round. As the number of moves
is greater than the number of unpebbled vertices in S, either Defender will place a second
pebble on a vertex of S and Mover wins as above or all vertices of S will have a pebble,
Mover will place a second pebble on some vertex, moving from vn. Since Defender cannot
pebble back to vn it must either pebble to the root or place a second pebble on a vertex in
S. In each case Mover wins.

By symmetry, η(P n−2
n , v1) = η(P n−2

n , vn) = 2n − 2 and for n ≥ 4, we note that 2n − 2 ≥ n.
Thus the result follows.

2.3 P n−3
n

Notice that Theorem 1.10 implies that η(P 1
4 ) = 8. So, we may assume that n ≥ 5.

Now, we let S = {v2, v3, . . . , vn−2} and T = {vn−1, vn}. Observe that S is a clique, vn−1 is
adjacent to every vertex of S and vn is adjacent to every vertex of S − {v2}.

In this section, we consider a configuration with C(vn−1) = x and C(vn) = y. We define s to
be the number of unpebbled vertices in S. We first look at nontrivial configurations based
of the values of s and corresponding values for x, y. We will write (x, y) to denote starting
configurations with x pebbles on vn−1 and y pebbles on vn.

Lemma 2.11. Let n ≥ 5. Consider a configuration on P n−3
n such that there are s unpebbled

vertices on the vertices of S = {v2, v3, . . . , vn−2} and T = {vn−1, vn} has C(vn−1) = x and
C(vn) = y pebbles. If x + y ≥ 3s + 4, then Mover has a strategy to place a pebble on each
vertex in S.
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Proof. If s = 0, we are done. So, suppose s ≥ 1. If Defender places a second pebble on any
vertex in S, then Mover will win on their next turn. So we will not consider these moves.
Since vn is not adjacent to v2, we can divide this into two cases.

Case 1: Suppose that C(v2) = 1. Then Mover can pebble from either vn−1 or vn to
the unpebbled vertices of S. If Mover pebbles from T to S and Defender pebbles
within T , then each round removes 3 pebbles from T . After s rounds, each ver-
tex of S is pebbled and there are at least 3s+4−3s = 4 pebbles on the vertices of T .

Case 2: Suppose that C(v2) = 0. Mover can pebble from vn to any of the s − 1
unpebbled vertices in S not v2. After s − 1 rounds, the only unpebbled vertex in
S is v2 and there are at least 3s + 4 − 3(s − 1) = 7 pebbles on the vertices of T .
If x ≥ 2, then Mover will pebble to v2. If x = 1, Mover will pebble to vn−1. Since
Defender cannot pebble from vn−1 to vn, they must pebble from vn to vn−1. Mover
will pebble from vn−1 to v2. If x = 0, then Mover and Defender will pebble from
vn to vn−1. Mover will then pebble to v2.

Theorem 2.12. If n ≥ 8, then η(P n−3
n , v1) ≤ 3n− 5.

Proof. Consider configurations with at least 3n − 5 pebbles distributed with s unpebbled
vertices in S = {v2, v3, . . . , vn−2}, and t pebbles on T = {vn−1, vn} with C(vn−1) = x
and C(vn) = y. Note that 0 ≤ s ≤ n − 3 and that the total number of pebbles is
t + (n− 3− s). Assume we have a nontrivial configuration on the vertices of P n−3

n . Notice
that since t + (n− 3− s) ≥ 3n− 5, we have t ≥ 2n + s− 2 ≥ 2s + 6 + s− 2 = 3s + 4. We
note that if Defender ever places a second pebble on a vertex in S, then Mover will pebble
to v1 and win. So, we consider other pebbling options for Defender when available.

If C(v2) = 1, then by Lemma 2.11, Mover can place a pebble on each vertex in S with at
least 4 pebbles left on T . If x = 2, Mover will pebble from vn−1 and place a second pebble
on v2. No matter what pebbling move Defender makes, there will be a vertex in N(v1) with
at least two pebbles on it. Mover will then pebble to v1 and win.
If C(v2) = 0, then by Lemma 2.11, Mover can place a pebble on each unpebbled vertex of
S, other than v2, leaving at least 7 pebbles on the vertices of T .

Case 1: Let x ∈ {6, 7}. Then Mover pebbles to v2 and Defender pebbles in T .
Now, x ≥ 2. Mover will pebble from vn−1 to v2. No matter what pebbling move
Defender makes, there will be a vertex in N(v1) with at least two pebbles on it.
Mover will then pebble to v1 and win.

Case 2: Let x ∈ {4, 5}. Then Mover pebbles to v2 and Defender pebbles in T . If
x ≥ 2, then Mover will pebble from vn−1 to v2. No matter what pebbling move
Defender makes, there will be a vertex in N(v1) with at least two pebbles on it.
Mover will then pebble to v1 and win. If x = 0, then y = 6. Mover and Defender
will pebble from vn to vn−1. Now, x = 2. Mover will pebble from vn−1 to v2. No
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matter what pebbling move Defender makes, there will be a vertex in N(v1) with
at least two pebbles on it. Mover will then pebble to v1 and win.
Case 3: Let x ∈ {2, 3}. Then, Mover pebbles to v2 and Defender pebbles from
vn to vn−1. Mover, then pebbles from vn to vn−1. Now, x ∈ {2, 3} again, but it
is Defender’s turn. Since Defender cannot pebble to vn, they must place a second
pebble on a vertex in S. Thus, Mover will pebble to v1 and win.
Case 4: Let x ∈ {0, 1}. Then, Mover and Defender will pebble from vn to vn−1. At
this point x ∈ {2, 3}. Mover will pebble from vn−1 to vn. Since there is a pebbling
move on vn, Defender must pebble from vn and place a second pebble on a vertex
in S (they cannot pebble to vn−1. Mover will pebble from S to v1 and win.

Corollary 2.13. If n ≥ 9, then η(P n−3
n ) ≤ 3n− 5.

Proof. If the root is vi for 2 < i < n − 1 then N(vi) = V (P n−3
n ) and n pebbles suffice for

Mover to win since root is adjacent to all other vertices by Proposition 1.8. If root is v2 or
vn−1 then either v1 has at least two pebbles and Mover wins or 3n − 6 pebbles are on the
rest of the graph and Mover wins by Theorem 2.10. If r = v1 or vn, then Mover wins by
Theorem 2.12.

2.4 P n−4
n

Notice that Theorem 1.10 implies that 16 ≤ η(P 1
5 ) ≤ 19. So, we may assume that n ≥ 6.

Let S = N(v1) = {v2, v3, . . . , vn−3} and T = {vn−2, vn−1, vn}. Observe that S is a clique,
vn−2 is adjacent to S, vn−1 is adjacent to S − {v2} and vn is adjacent to S − {v2, v3}.

Consider a configuration with C(vn−2) = x, C(vn−1) = y, and C(vn) = z. We will show that
if x+y+z is large enough, then Mover wins. Mover’s strategy is to first place a single pebble
on each vertex in S. Then Mover plays a strategy in T that forces a round such that Mover
has a turn in which C(vn−2) ≥ 2. Mover then plays from vn−2 to v2, placing a second pebble
on v2. As v2 is not adjacent to vn−1 and vn, Defender cannot play back to vn−2. Hence,
Defender either leaves a second pebble on v2 or plays from v2 to another vertex in S. In
either case Mover can play from a vertex in S to the root and win.

We first describe a strategy playing for a subgame in T for Mover to have a turn in which
C(vn−2) ≥ 2.

Lemma 2.14. Let n ≥ 6 and assume that T = {vn−2, vn−1, vn} with configuration C(vn−2) =
x, C(vn−1) = y, and C(vn) = z and both Mover and Defender play in T . If x + y + z ≥ 9,
Mover has a strategy to force a round with at least 2 pebbles on vn−2 for Mover’s turn and
at least x+ y + z − by

2
c − 6 pebbles remain on T .

Proof. We will write (x, y, z) for the configuration on T and say that Mover wins if it can
reach a turn with C(vn−2) ≥ 2. Observe that since T is a clique, the cases (x, y, z) and
(x, z, y) are identical. So we can assume y ≤ z.
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Case 1: Let x ≥ 2. Mover wins immediately. That is Mover wins (2, y, z) for all
y, z. No pebbles are used.

Case 2: Let x = 1. The initial configuration on T is (1, y, z) with y ≤ z. Mover
will play repeatedly vn−1 to vn. Since Defender cannot reverse the previous move,
Defender must also play vn−1 to vn or place a second pebble on vn−2. In the second
case Mover wins. So, if y = 4r + s with s ∈ {0, 1, 2, 3} play will continue to a new
configuration (1, s, z + 2r).

If s ∈ {2, 3}, then from (1, s, z + 2r), Mover plays vn−1 to vn. As 0 or 1 pebbles
remain on vn−1, and Defender cannot reverse the previous move, Defender must
play from vn to vn−2, placing a second pebble on vn−2 and Mover wins. If s ∈ {0, 1}
then Mover plays vn to vn−1 and Defender will also (or place a second pebble on
vn−2) and the situation of the previous sentence applies and Mover wins.

Observe that the only cases in which the strategies above might fail to produce a
Mover win are when (1, s, z + 2r) is such that s ∈ {0, 1} and z + 2r ≤ 4. In this
situation either there are not 2 moves possible from vn or after both plays play vn
to vn−1 after Mover plays vn−1 to vn there is only one pebble on vn so no moves
remain. So the strategy could fail when y ∈ {0, 1} (hence r = 0) and z ≤ 4. In
these cases x+ y + z ≤ 6, so Mover wins if x+ y + z ≥ 7.

When s = 0, 1, 2, 3, the final configurations starting from (1, 4r+ s, z) are (2, 0, z+
2r−5), (2, 1, z+2r−5), (2, 0, z+2r−1), (2, 1, z+2r−1), respectively. The number
of pebbles used is 2r + 4 when s ∈ {0, 1} and 2r + 2 when s ∈ {2, 3}. Hence at
least x+ y + z − 2r − 4 = x+ y + z − by

2
c − 4 pebbles remain.

Case 3: Let x = 0. Mover can play vn−1 to vn−2 or vn to vn−2. In each case if
Defender plays to vn−2 then x for the next round is 2 and Mover wins. Otherwise
Defender can play vn−1 to vn or vice versa assuming there are at least 2 pebbles
on the other vertex. When Mover plays from vn−1 the next round starts at (1, y −
1, z − 2) or (1, y − 4, z + 1) and when Mover plays from vn the next round starts
at (1, y − 2, z − 1) or (1, y + 1, z − 4). In all cases if x + y + z ≥ 9, the new
configuration (x′, y′, z′) has x′ = 1 and x′ + y′ + z′ ≥ 7 and Case 2 applies. In this
case, 2 additional pebbles are used before moving to the Case 2 situation and at
most by

2
c+ 6 pebbles are used.

It is interesting to note some other cases not covered by Lemma 2.14. From the proof, Mover
wins all cases with x ≥ 2; all cases (1, y, z) except y ∈ {0, 1} and z ≤ 4; and all cases (0, y, z)
with y + z ≥ 9. For cases (1, 1, 2) and (1, 1, 3) Mover can win by instead playing vn to vn−1.
Using these and Mover win for (1, 0, 5) one can also check that Mover wins in the sense
of Lemma 2.14 whenever x + y + z ≥ 6 with y ≤ z except that Defender has a winning
strategy for (1, 1, 4) and (0, 0, 8). Building to an upper bound for η(P n−4

n ), we see that if S
has unpebbled vertices, then Mover will want to pebble from T to S. The following Lemma
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yields conditions for which Mover can pebble out of T and still have two pebbles on vn−2.

Lemma 2.15. Under the same assumptions as Lemma 2.14, if x + y + z ≥ 17 and Mover
plays away from T the first time C(vn−2) ≥ 2 on Mover’s turn, then Mover has a strategy to
force a second round with at least 2 pebbles on vn−2 for Mover’s turn.

Proof. We will begin by splitting the proof into cases based on the value of x.

Case 1: Suppose x ≥ 2. Mover plays off of vn−2 on the first move. No matter what
Defender plays in T , at least 17−3 = 14 pebbles remain and by Lemma 2.14 Mover
reaches a second move with C(vn−2) ≥ 2.

Case 2: Suppose x = 1. Mover plays as in Case 2 of the proof of Lemma 2.14 reach-
ing configurations (2, 0, z+2r−5), (2, 1, z+2r−5), (2, 0, z+2r−1), (2, 1, z+2r−1)
depending on s. Mover plays out of T from vn−2 and Defender plays in T reaching
configurations (0, 1, 2r + z − 7) or (1, 0, 2r + z − 7) when s = 0; (0, 2, 2r + z − 7)
or (1, 1, 2r + z − 7) when s = 1; (0, 1, 2r + z − 3) or (1, 0, 2r + z − 3) when s = 2;
(0, 2, 2r + z − 3) or (1, 1, 2r + z − 3) when s = 3. Mover plays from vn to the
vertex with no pebbles or in the case each has 1 plays to vn−1. Defender then must
either place a second pebble on vn−2 or play to vn−1 which will now have 2 or 3
pebbles. Then, Mover plays vn−1 to vn, forcing Defender to play from vn to place
a second pebble on vn. This move is possible as long as 2r + z − 7 − 4 ≥ 1. It is
straightforward to check that 2r + z ≥ 12 when x = 1, y + z ≥ 16 with y ≤ z and
r = by

2
c.

Case 3: Suppose x = 0. If y ≥ 2, Mover plays vn−1 to vn−2 and then after Defender
plays the configuration is (1, y − 1, z − 2) or (1, y − 4, z + 1). An analysis of each
of these similar to Case 2 with x = 0 so y + z ≥ 17 shows that Mover wins except
possibly the cases (x, y, z) being one of (0, 8, 9), (0, 8, 10), (0, 7, 10), (0, 6, 11).

From (0, 8, 9) Mover plays vn−1 to vn−2 and Defender has two options with new
configuration (1, 4, 10) or (1, 7, 7). We will show that Mover can win both. Assum-
ing Defender does not place a second pebble on vn−2) Mover playing from vn−1 to
vn forces Defender to play the same move. So from (1, 4, 10) Mover forces (1, 0, 12)
in one round then forces (1, 2, 8) in another round then Mover playing from vn−1

to vn forces Defender to place a second pebble on vn−2, with configuration (2, 0, 7).
Mover plays from vn−2 out of T and Defender has two choices resulting in (0, 1, 5)
or (1, 0, 5), each of which allows Mover to win again by the comments after the
Proof of Lemma 2.14 (or this is easy to check directly). In a similar manner from
(0, 8, 10) Mover can force (0, 1, 6) or (1, 0, 6) and win. From (1, 7, 7) Mover forces
(1, 3, 9) then (2, 1, 8) resulting in one of (1, 1, 6) or (0, 2, 6) both of which allow
Mover win a second time.

From (0, 7, 10) Mover forces one of (1, 3, 11) or (1, 6, 8). From (1, 3, 11) Mover forces
(2, 1, 10) resulting in (1, 1, 8) or (0, 2, 8). In both scenarios, Mover wins a second
time. From (1, 6, 8) Mover forces (1, 2, 10) then (2, 0, 9) which results in (0, 1, 7) or
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(1, 0, 7). In either situation, Mover wins a second time.

From (0, 6, 11) Mover plays vn to vn−2 forcing one of (1, 4, 10) or (1, 7, 7) which are
the same two options from (0, 8, 9) and Mover wins.

Finally we must consider y ∈ {0, 1}. That is configurations (0, 0, z) with z ≥ 17 and
(0, 1, z) with z ≥ 16. For (0, 0, z) after one round the configuration is (1, 1,−z−4).
Then as in case 2, with s = 1 after Mover plays out of T the configuration is
(0, 2, 2r+z′−7) or (1, 1, 2r+z′−7) each of which Mover wins as long as 2r+z′−7 ≥ 5
and z′ = z − 4 ≥ 13 and r = 0. So Mover wins. For (0, 1, z) after one round the
configuration is (1, 2,−z − 4). Then as in case 2, with s = 2 after Mover plays out
of T the configuration is (0, 1, 2r+ z′ − 3) or (1, 0, 2r+ z′ − 3) each of which Mover
wins as long as 2r + z′ − 7 ≥ 5 and z′ = z − 4 ≥ 12 and r = 0. So Mover wins.

To just show finite η(P n−4
n ) we could obtain a second move as in Lemma 2.15 when x+y+z ≥

25 by applying Lemma 2.14 twice with a much shorter proof. However the final upper bound
would not be as good.

Lemma 2.16. Consider configurations on P n−4
n with n ≥ 6, s unpebbled vertices in S =

{v3, v4, . . . , vn−3} (when n = 5, S = ∅), and at least t pebbles on the remaining vertices
T = {vn−2, vn−1, vn}. Assuming that Defender does not place a second pebble on a vertex in
S,

(a) Mover has a strategy to place a single pebble on each vertex in S within s rounds when
s ≥ 4 and t ≥ 3s+ 1;

(b) Mover has a strategy to place a single pebble on each vertex in S within 3 rounds when
s = 1 and t ≥ 7; and

(c) Mover has a strategy to place a single pebble on each vertex in S within s + 1 rounds
when s ∈ {2, 3} and t ≥ 3s+ 4.

Proof. Again, we denote C(vn−2) = x, C(vn−1) = y, and C(Vn) = z. When referring to a
configuration on vn−2, vn−1, and vn, we will use the notation (x, y, z) Note that every vertex
in S is adjacent to every vertex in T except that vn is not adjacent to v3.

Notice that in each part, if C(v3) = 1, Mover can play from any vertex in T to any unpebbled
vertex in S on each turn as long as there is a move. If Mover plays to S and Defender plays
in T the number of pebbles on T is reduced by 3 in each round. So at the start of round j,
at least 3s+ 1− 3(j − 1) pebbles remain on T . In particular there are at least 4 pebbles at
the start of each round, so Mover can play as described and fill S in s rounds.

If C(v3) = 0 and x ≥ 2 or y ≥ 2 then Mover plays first to v3 from vn−2 or vn−1 and uses
the remaining rounds to fill S as above in s rounds. If C(v3) = 1 initially the same strategy
works. This covers the case s = 0.
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Proof of (a): If s ≥ 4 and both x, y ≤ 1, Defender must place a second pebble on one of vn−2

or vn−1 by the start of the fourth round. Then Mover plays to v3 and completes as describe
above.

Proof of (b): If s = 1, then we consider where the unpebbled vertex in S is. Let C ≥ 7. If
C(v3) = 1, then Mover pebbles to the unpebbled vertex in S and Defender pebbles in T .
This reduces C to 4. If C(v3) = 0, we have 3 cases.

Case 1: If x ≥ 2 or y ≥ 2, then Mover pebbles to v3 and Defender pebbles in T .
Now, the vertices of T have 4 pebbles on them.

Case 2: If x = 1 or y = 1, then Mover pebbles from vn to the unpebbled vertex.
Defender will pebble then place a second pebble on vn−1 or vn−2, else Defender peb-
bles to S and loses on the next round. Mover will then pebble to v3. If x = y = 1,
then Mover will pebble to either vn−1 or vn−2, say vn−1. If Defender pebbles from
vn to another vertex in T , then Mover will pebble to v3. If Defender pebbles from
vn−1 to vn−2, then Mover will pebble to v3.

Case 3: Finally, suppose x = y = 0. Mover and Defender will pebble to the un-
pebbled vertices in T . Now, the configuration of pebbles on the vertices of T is
(1, 1, 5). Based on Case 2, Mover can pebble to v3.

Proof of (c): Let t ∈ {2, 3}. The case when C(v3) = 1 is handled above. So, suppose
C(v3) = 0. If both x, y ≤ 1, Mover pebbles to the unpebbled vertices in S that are not
v3. Defender will pebble in T . This takes s − 1 rounds and removes 3(s − 1) pebbles from
T . Now, the only pebble-free vertex in S is v3 and there are at least 3s + 4 − 3(s − 1) = 7
pebbles on the vertices of T . By the proof of part (b), Mover can place a pebble on v3.

From these results, we find an upper bound for η(P n−4
n ).

Theorem 2.17. Let n ≥ 5. Then η(P n−4
n , v1) ≤ 3n+ 5.

Proof. Consider configurations with at least 3n+5 pebbles distributed with s unpebbled ver-
tices in S = {v3, v4, . . . , vn−3} and t pebbles on T = {vn−2, vn−1, vn}. Note that 0 ≤ s ≤ n−5
and that the total number of pebbles is t+ (n− 5− s) or t+ (n− 5− s) + 1 depending on
C(v2). Assume we have a nontrivial configuration on the vertices of P n−4

n .

If C(v2) = 1, then Lemma 2.16 applies and we are done.

If C(v2) = 0, then t+ (n− 5− s) ≥ 3n+ 5 hence t ≥ 2n+ s+ 10.

If s ≥ 4, by Lemma 2.16, after at most s rounds each vertex in S has one pebble. Each
round reduces the number of pebbles on T by 3, so at least 2n+ s+10− 3s = 2(n− s) + 10
pebbles remain on T . Since s ≤ n− 5 there are at least 20 pebbles remaining on T after S
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is full. By Lemma 2.15, Mover wins.

If s = 0, then 2n+ s+ 10 ≥ 20 and, by Lemma 2.15, Mover wins.

If s = 1, then by Lemma 2.16, after at most 3 rounds, each vertex in S has one pebble. This
removes at most 6 pebbles from the vertices of T , so at least 2n+ s+10− 6 = 2n+5. Since
n ≥ 6, 2n+ 5 ≥ 17. Lemma 2.15, Mover wins.

If s ∈ {2, 3}, by Lemma 2.16, after at most s + 1 rounds each vertex in S has one peb-
ble. There are at least 2n + s + 10 − 3(s − 1) − 6 = 2(n − s) + 7. Since n − s ≥ 5, then
2(n− s) + 7 ≥ 17 and, by Lemma 2.15, Mover wins.

It may be possible to improve the bound slightly by a careful analysis of play as in Lemma
2.16. The conclusions of the Lemma apply for most cases of (x, y, z) with x + y + z = 16
and Mover might have a strategy to avoid these.

Corollary 2.18. Let n ≥ 5. Then η(P n−4
n ) ≤ 3n+ 5.

Proof. If n = 5, then P n−4
n is just a path and the inequality holds by Theorem 1.10. So, let

n ≥ 6. If r = vi for 3 < i < n − 2, then N [vi] = V (P n−4
n ) and n pebbles suffice for Mover

to win by Proposition 1.8. If r = v3, then either there is one pebbling move on the vertices
v1, v2, in which case Mover wins, or there are at least 3n+3 pebbles on the rest of the graph
and Mover wins by k = n− 2 case. Notice the case of r = vn−2 is equivalent. If r = v2, then
either v1 has at least two pebbles on it and Mover wins or there are at least 3n+ 4 pebbles
on the rest of the graph and Mover wins by k = n − 3 case. Notice the case of r = vn−1 is
equivalent. If r = v1 or vn, then Theorem 2.17 states Mover wins.

3 Conclusion
Two-Player Pebbling still has many interesting open questions. While [4] considers the
two-player pebbling number of the join of certain graphs, the Cartesian product of graphs
remains open. If r is the bottom left vertex, as in Figure 1, then it is easy to see that for
grids, Pn�Pm, if m,n ≥ 4, then η(Pn�Pm) = ∞ by Theorem 1.6 using S = N(r). The cases
when m,n ∈ {2, 3} and when m < 4 ≤ n remain challenging. Other, higher dimensional
Cartesian products are still open, such as hypercubes Qn.

Throughout this paper, we have used the sufficient condition for the structure of a graph
for which Defender has a winning strategy in Theorem 1.6 by [3]. We have also seen graph
structures in P k

n , with n ≥ 7 and 2 ≤ k ≤ n− 5, for which η(P k
n ) = ∞. However, the proof

of Theorem 2.7 does not rely on the sufficient condition stated in Theorem 1.6. We hope to
improve upon the result of Theorem 1.6 to find a broader graph structure or cut set condition
or even a necessary and/or sufficient condition. We have found that Mover has a winning
strategy on all other values of k in P k

n , although for k = n− 3 and k = n− 4 we only have
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r

Figure 1: The Cartesian Product of P4�P5

upper bounds. We hope to find exact values for η(P n−3
n ) with n ≥ 9 and η(P n−4

n ) with n ≥ 6.

Two-player pebbling lends itself to future generalizations. One such generalization is allowing
Mover to win if they place a pebble on one of any set of goal vertices R. Other generalization
is allowing Defender to forfeit their turn. This could alleviate issues where Defender is forced
to pebble in such a way that helps Mover.
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