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Abstract
Vectors & = (z1, za, . .. ,xn)T and ¥ = (y1, 92, - - . ,yn)T are combinatorially orthogonal
if [{i : x;y; # 0}| # 1. An undirected graph G = (V, F) is a combinatorially orthogonal
graph if there exists f : V' — R™ such that for any u,v € V, wv ¢ E iff f(u) and f(v)
are combinatorially orthogonal. We will show that every graph has a combinatorially
orthogonal representation. We will show the bounds for the combinatorially orthogonal
dimension of any path P,.
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1 Introduction

Combinatorial orthogonality was first introduced by Beasley, Brualdi, and Shader [1]. They
defined vectors © = (x1,...,2,) and y = (y1, ..., Yn) to be combinatorially orthogonal if

{i:xy; #£ 0} # 1.

This definition means that the combinatorial orthogonality of two vectors is only depen-
dent on the positions of the nonzero coordinates. An alternate definition is vectors = =
(x1,...,2,) and y = (y1,...,yn) with 2;,y; € {0,1} for 1 < ¢ < n are combinatorially or-
thogonal if z -y # 1.

This definition can be extended to matrices: A matrix A is combinatorially row-orthogonal
if its rows are pairwise combinatorially orthogonal. Similarly A is combinatorially column-
orthogonal if its columns are pairwise combinatorially orthogonal. If A is a square matrix
that is both combinatorially row-orthogonal and combinatorially column-orthogonal, it is
called a combinatorially orthogonal matriz. Beasley et al. used this definition to determine
the minimum number of nonzero entries possible in an orthogonal matrix of order n which
cannot be decomposed into two smaller orthogonal matrices. Some work has also been done
on the combinatorial orthogonality of the digraph of orthogonal matrices [1, 2, 3].

2 Combinatorially Orthogonal Graphs

Let G = (V, E) be a simple undirected graph. Then we say G has a k-combinatorially or-
thogonal representation of type I if there exists a function f : V — RF such that for any
u,v € V uww ¢ E if and only if f(u) and f(v) are combinatorially orthogonal. We say G
has a k-combinatorially orthogonal representation of type II if there exists g : V — R¥ with
g(v); € {0,1} for v € V and 1 < i < k such that for any u,v € V ww € F if and only if
g(u) - g(v) # 1. The equivalence of these representations is given in Proposition 2.1.

Proposition 2.1. Let G be a simple undirected graph that has a k-combinatorially orthog-
onal representation of type I, then there is a k-combinatorially orthogonal representation of
type II of the graph G that is equivalent. Further, if G has a k-combinatorially orthogonal
representations of type II, then there is a k-combinatorially orthogonal representation of type
I of the graph G that is equivalent. (That is every representation of type I is equivalent to a
representation of type 11 and vice versa.)

Proof. 1t is sufficient to consider the function

P, = {1 if & # 0

0 otherwise

for all ¥ € R¥. We can then observe that for any 7,7 € R*, |{i : x;y; # 0} = F(Z) -
F(y). From this it follows immediately that Type I and Type II combinatorially orthogonal
representations of a graph are equivalent. O
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Since both of the representations are equivalent, we will primarily use the representations
of type II. In either case, the question arises whether there exists a combinatorially orthogonal
representation for every graph. Theorem 2.2 shows that every graph has a combinatorially
orthogonal representation.

Theorem 2.2. For every graph G = (V, E), there exists an integer k such that G has a
k-combinatorially orthogonal representation.

Proof. Let G = (V,E) be the complement of G and & = |E|. Label the edges of G
{€),é9,...,e,} = E. Define f : V — R* such that for v € V f(v); = 1 if ¢ is incident
to v and 0 otherwise. Note that uv ¢ E if and only if f(u) - f(v) = 1. Similarly, uv € E if
and only if f(u) - f(v) = 0. Thus G is a k-combinatorially orthogonal graph. O

We define the combinatorially orthogonal dimension of G, denoted p.(G), to be the
minimum k such that there exists a combinatorially orthogonal representation of G. If the
combinatorially orthogonal dimension of a graph G is at most k, we refer to G as a k-
combinatorially orthogonal graph. From Theorem 2.2, we can see that p.,(G) < |E|. This
bound is interesting in that it is based on the non-adjacencies of GG, which is opposite of the
general bound for dot product graphs which is based on adjacencies.

Theorem 2.3. Let H be an induced subgraph of G, then peo(H) < peo(G).

Proof. Let f : V(G) — R* be a function such that G is a k-combinatorially orthogonal
graph. It can easily be noted that f restricted to V(H) is a k-combinatorially orthogonal
representation. 0

Theorem 2.3 allows the characterization of k-combinatorially orthogonal graphs, for any
fixed k, by forbidden induced subgraphs or substructures.

Since we may use representations of the form f : V — {0,1}* there are 2% differ-
ent vectors to choose from for each vertex of the graph being represented. Therefore, a
k-combinatorially orthogonal representations of a graph G = (V, F) is tantamount to a par-
tition of V into 2* classes, each class characterized by a behavior. For example, if f(v) = 6,
then v is a universal vertex. We record this observation, in a form useful to us, as the
following lemma.

Lemma 2.4. Let G be a graph and v be a universal vertex of G. Then peo(G) = peo(G —v).

Proof. Let p.(G) = k. By Theorem 2.3, p.,(G — v) < peo(G).

We will now use a proof by contradiction. Suppose that p.,(G —v) < pe(G). Then there
exists a k — 1-combinatorially orthogonal representation of G — v, namely f : V(G —v) —
{0,1}*1. Now consider the combinatorially orthogonal representation of G given as follows

for any u € V(G)
Pl) = Flu) ifuv
Y= 0 ifu=w

A brief examination shows that this representation holds for G. But this is a contradiction
that p.,(G) = k since this is a k — 1-combinatorially orthogonal representation of G.

Therefore, pe(G —v) = peo(G). O
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3 Combinatorially Orthogonal Dimension of Paths

After considering general bounds on combinatorially orthogonal graphs and some of the
characterized behavior, we turn to a specific class of graphs - paths. To do this we can
first note that for n > 3, no pair of vertices has the same neighborhood and there is no
universal vertices. Thus each vertex will map to a distinct vector and no 0 will be used in
any k-combinatorially orthogonal representation. We now consider what other vectors
are not possible or restricted in any k-combinatorially orthogonal representation of P,. The
use of 1 is not possible in any k-combinatorially orthogonal representation of P,, as shown
in the following lemma.

Lemma 3.1. Ifn > 5, then any k-combinatorially orthogonal representation of P, can have
no all 1 vector from {0, 1}*.

Proof. Suppose that v € V(PB,) is represented by [1 1 ... 1]. Then the only vertices
non-adjacent to v are represented by vectors with exactly 1 nonzero element. There can be
at most 2 such vectors or they will form a complete subgraph isomorphic to K3. Thus P,
has at most 2 vertices non-adjacent to v. Thus n < 5. O]

We can next examine the use of unit vectors in any k-combinatorially orthogonal repre-
sentation of P,.

Lemma 3.2. Ifn > 6, then any k-combinatorially orthogonal representation of P, can have
at most one unit vector from {0,1}*.

Proof. Suppose that P, has k-combinatorially orthogonal representation with at least 2 unit
vectors from {0,1}*. Without loss of generality, suppose those vectors are [1 0 ... 0}
and [O 10 ... 0} and they represent vertices v and v in P,, respectively. Because these
two vectors are orthogonal, they are also combinatorially orthogonal. So uv € E(P,).

Now consider all w € V(FP,) such that uw ¢ E(P,) and vw ¢ E(P,). For all such w,
fi(w) = fa(w) = 1. This however means for any two such vertices, namely w; and ws,
wywy € E(P,) since f(w;) - f(we) > 2. Thus at most two such w can exist. In the case
where two such vertices exist, then n < 6 as there are at most 2 other vertices adjacent to
either u or v. O]

These lemmas limit the vector options when building k- combinatorially orthogonal rep-
resentations of P, when n > 6. These limitations lead to following upper bound of combi-
natorially orthogonal dimension of P, and associated proof.

Theorem 3.3. For any n,

) (p)<{n—2 if n is odd

n—1 ifn is even
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Proof. We will break our proof into two cases, namely when n is even and when n is odd.
Case 1: Suppose that n is even. Consider the following function f : V(P,) — {0,1}" 1.

flor) = [1 0 ]

1 ifl<i<[23]1+1
fz’(UQ) = ( 1

0 otherwise

1 ifi=1lori=[23]+2
fz’(Ug) = [ 2 W

0 otherwise

1f7,—10r2—[771+10r2—[]72w+("7_31—|—1

otherwise

For j > 3 fi(vj) = {O

For example, when n = 8, the vectors f(v1), ..., f(vs) are the columns of this matrix:

10111111
01011000
01000110
01000001
00110000
00001100

000000 1 1]

To show that this representation satisfies the adjacencies of P,, we will first consider
f(v2) - f(v;). Trivial examinations shows that f(vs) - f(v;) = 0 when j = 1 or 3. Similarly,
since 2 < [22] +1 < [252] + 1, f(vs) - f(v;) =1 when 3 < j < n.

When we examine f(vs) - f(v;) with j > 3, it is trivial to note that f(vq) - f( V) =

Now consider f(vs) - f(v;) for j > 4. When j = 4, fi(vs) = fi(v4) = 1 and [4 W +
[222] + 1 = 23] 4+ 2, so vguy € E(P,). Similarly for j > 5, f(vs) - f( ;) = 1 since
(5571 + %52 31+1> "] +2. So vy & E(F).

Fmally we can con51der f(v;) - f(ug), where j,k > 4. Since fi(v;) = fi(vg) = 1, f(v;) -
f(vx) > 1. Thus any two such vertices are adjacent if and only if

(;] +1= [%1 +1or (1)

LA = T2 R 4 &)

First, (1) is true if and only if [552] = [£2]. To examine this equality, suppose that
k = j 4+ m for some non-zero integer m. Then [E53] = [H2=37] = [13 4 2] If |m| > 2,
then [£52] # [£53]. This leaves m = 1 or m = —1. This also implies either j or k is even
and the other is odd. Without losss of generality, we will suppose that j is even and k is odd.
Namely j = 2t and k = 2¢ & 1 for some integer . So [152] = [22] =[t—1—-1]=¢ - L
If k= 2t+1, then [%2] = [222] = [t — 1] = t — 1. However if k = 2t — 1, then
(3] = [2£4] = [t — 2] = ¢ — 2. Thus vjv, € E(G) if k= j + 1.

Next, (2) is true if and only if [£52] = [£52]. Similar to the prior case, we can suppose
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that k = j + m for some non-zero integer m. We can see that [52] # [Z22=2] if |m| > 2.
This leaves us with the two cases of m = +1. This also implies that either j or k is even
and the other is odd. Without loss of generality, we will again assumes that j is even and &
is odd. So j = 2t and k = 2t £ 1 for some integer t. So [%1 = [252] =t — 1. Similarly
if k=2t—1 then [52] = [21=2] = [t — 2+ 1] =t — 1. However, if k = 2¢t + 1 then
(2] = [24122] = [t — 1+ 1] =¢. Thus vju, € E(G) if k=5 — 1.

Thus (1) and (2) establish that vju, € E(G) if and only if £ = j & 1, which satisfies the
desired adjacencies. Further we have shown that the function is an n — 1 combinatorially

orthogonal representation of P, when n is even.

Case 2: Suppose that n is odd. Consider the following function f : V(P,) — {0,1}"2,

P T

flur) = [1 0 ... 0]
if1<i<[2%4]+1

~

1
i\V2) =
filvz) {0 otherwise
A 1 ifi=1lori=/[%%]+2
filvs) = ) heal
0 otherwise
For 3 <j<n fi(v;) = if i =Lori=[5"]+Tori= [+ 57 +
0 otherwise

filvn) =

: 1 ifi=lori=[2%2]+1
0 otherwise

A brief examination shows that f(v;) = f(v;) for i = 1,2,--+ ,n — 1, where f is the
function from Case 1, where the n used to define f is smaller than the corresponding n for
f by 1. Thus the validity of this representation has been proven for vy,--- ,v,_1. We will
now show that it holds f(uv) - f(vn).

First we can proved previously that [252] = [£2] when j = n — 1. Thus [253] = [254]
so f(ug) - f(v,) =1for k=1,2,--- ,n—2. Similarly f(v,_1) - f(v,) = 2.
Thus we have shown that this function f is an (n — 2) combinatorially orthogonal represen-
tation of P, when n is odd. O

4 Further Work

Theorem 3.3 provides an upper bound for the combinatorially orthogonal dimension of P,.
We conjecture that this bound is the combinatorailly orthogonal dimension of P, for n > 6.

Similarly, we make the following conjecture about k-combinatorial orthogonal represen-
tations.

Conjecture 4.1. Let X be a k-combinatorial orthogonal representation of a graph G, and let
U be a kxk combinatorial orthogonal matriz. Then UX 1is also a k-combinatorial orthogonal
representation of G.
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The proof of this conjecture will likely focus on the linear algebra properties related to
combinatorial orthogonal matrices.
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