Kutztown University

Research Commons at Kutztown University

Computer Science and Information Technology Computer Science and Information Technology Faculty Department

7-24-2014

Using Weka to Mine Temporal Work Patterns of Programming Students

Dale E. Parson Kutztown University, parson@kutztown.edu

Follow this and additional works at: https://research.library.kutztown.edu/cisfaculty

Part of the Data Science Commons

Recommended Citation

Tutorial notes presented at The 2014 International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS'14), Las Vegas, July 21-24.

This Conference presentation is brought to you for free and open access by the Computer Science and Information Technology Department at Research Commons at Kutztown University. It has been accepted for inclusion in Computer Science and Information Technology Faculty by an authorized administrator of Research Commons at Kutztown University. For more information, please contact czerny@kutztown.edu.

Using Weka to Mine Temporal Work Patterns of Programming Students

Dale E. Parson, Kutztown University of PA, http://faculty.kutztown.edu/parson

Follow-up to "Mining Student Time Management Patterns in Programming Projects"

Dale E. Parson and Allison Seidel, FECS'14 (#FEC2189) http://faculty.kutztown.edu/parson/FECS2014ParsonTutorial.zip http://www.cs.waikato.ac.nz/ml/weka/ http://www.cs.waikato.ac.nz/ml/weka/book.html

1. Examine a typical programming project directory, makefile, and logdata.sh script.

See FECS2014ParsonTutorial/FillWord4/ makefile and logdata.sh.

2. Run CLASSPATH=.. make build test and examine the zipfile & datamine/.

Note that the **mv** command moves a zip file to the instructor's inbox every time a student runs **make** [**build** | **test** | **turnitin**]. Much of the later data extraction works with multiple zipfiles from multiple make actions, e.g., constructing a picture of a "work session" from multiple make invocations. (A "session" consists of one or more make invocations with no gaps ≥ 60 minutes.)

Alternative run ./**buildunix.sh &&** ./**rununix.sh** or **buildwindows.bat**, **runwindows.bat** to build without a makefile, used for build & test on a student machine. This step creates and appends data to data_do_not_lose_this_file.txt.

3. Run python worktimeToARFF.py 1 prjdata.csv fakegrades.csv surveys.csv emaildata.csv fakearff.arff ./fakemine FillWord4/

Use Python 2.7.X. Here are the contents of the demo CSV files:

prjdata.csv

##cour,seme,prjn,start,end csc243,sp2014,1,2014-02-10 00:01,2014-02-28 23:59 csc243,sp2014,2,2014-02-27 00:01,2014-03-16 23:59 csc243,sp2014,3,2014-03-13 00:01,2014-04-05 23:59 csc243,sp2014,4,2014-04-10 00:01,2014-04-19 23:59 csc243,sp2014,5,2014-04-20 00:01,2014-05-03 23:59

Course, semester, project number, start datetime, end datetime

fakegrades.csv

##suem,suid,Gprj1,Gprj2,Gprj3,ignore,ignore,Gprj4,Gprj5,ignore,ignore,Gcrs,Gle t,yea,trk,Cumg,Crdg,Cumm,Crdm parson,c243s14id1,1.02,1,0.97,0,0.97,1.02,1.05,0.9,0.85,0.9572,A,Sophomore,U GRD Liberal Arts & Science - BS CSC/INFO TECHNOLOGY,3.82,45,3.67,21

See schema STUDENT PRJ WORK.txt. Fake data out of grading spreadsheet.

surveys.csv

##suem,prjn,Xasn,Xdue,Xams
parson,1,1,2,3

Project number, count of competing CS assignments handed out, due, and any competing exam.

emaildata.csv

##suem,prjn,clue,count parson,4,0,1 parson,4,1,2

Email to instructor. The clue field is 0 for clueless emails, 1 for emails with good student understanding.

fakearff.arff is the output ARFF file.

./fakemine contains the mined ZIP files.

FillWord4/is the initial handout directory.

Notes from worktimeToARFF.py:

Mac/OSX datetime strings are incompatible. Linux & Solaris are OK.

____seconds_between_sessions___ = 3600 # Set to interval separating sessions.

___mode_session_time_minutes_quantum__ = 15

__mode_session_bytes_quantum__ = 1000

___mode_session_lines_quantum__ = 20

 $_diff_quantum_ = 20$

Next pattern depends on the course's source language.

 $_src_re_ = re.compile(r'^.*\.java$')$

Next pattern cracks apart fields in 'ls -l' while maintaining compatibility
with both Solaris & Linux, as far as I can tell. Assumes strip() off of ends.
Group 1 is bytes, 2 is month, 3 is day, 4 is time, 5 is filename.

 $z]+)\s+(\d+)\s+(\d+:\d+)\s+(\S+)\s')$

MAY 14, 2014 change <u>ls_re</u> to account for a platform where a student # got an ls with a year instead of hours:minute. Assume we can get either.

- 4. Run python addrank.py fakearff.arff to get the centile rankings.
- 5. Run ./wekacmd.sh fakearff.arff.tmp.arff to inspect the fake data.
- 6. Open demoStudentDB.arff to inspect some data prepared for the tutorial.

This dataset is a fake dataset prepped for the demo.

7. Discuss **Preprocessing** (StringToNominal and date removal), **Select attributes**, redundant attributes, analyses for a **numeric target attribute** (Simple K-means, M5Rule and M5P tree), discretizing and analyses for **nominal target attributes** (OneR, J48, naiveBayes).

schema STUDENT PRJ WORK.txt

1	studentid	suid	
2	student-year	syea	(Sophomore, Junior, Senior)
3	student-track	strk	(SD or IT or OT for other)
4	course	cour	
5	semester	seme	
6	project-number	prin	
7	project-start-datetime	pris	
8	project-end-datetime	prie	
9	assigned-until-started-hours	Hstr	(round to nearest hour)
10	completed-until-due-hours	Hend	(round to nearest hour)
11	started-until-due-hours	Jstr	(round to nearest hour)
12	Jstr - hours lost to skipped days	Jfst	(Jstr - 24 * each skip)
13	assigned-until-completed-hours	Jend	(round to nearest hour)
14	started-until-completed-hours	Jall	(round to nearest hour)
15	min-session-time-minutes	Mmin	(session gap of $\geq = 60$ mins)
16	max-session-time-minutes	Mmax	
17	mean-session-time-minutes	Mayo	
18	stddev-session-time-minutes	Mdev	
19	median-session-time-minutes	Mmed	
20	mode-session-time-minutes	Mmod	(round to nearest 15)
21	mean-time-hetween-sessions-hours	Havo	(round to nearest 15)
22	stddev-time-between-sessions	Hdev	
23	min-session-files	Fmin	
24	may-session-files	Emax	
25	mean-session-files	Favo	
26	stddev-session-files	Edev	
27	median-session-files	Emed	
28	mode-session-files	Fmod	
20	min-session-hytes	Vmin	
30	max_session_bytes	Vmax	
31	man-session-bytes	Vava	
32	stddov_sossion_bytes	Vdov	
32	median_session_bytes	Vmod	
31	mode-session-bytes	Vmod	(round to nearest 1000)
35	min_session_lines	Imin	(may need to use 2)
36	max_session_lines		(may need to use 2)
37	man-session-lines		(may need to use 2)
38	stddov_sossion_lines	Lavy	(may need to use 2)
20	modian_cossion_linos	Luev	(may need to use :)
40	median-session-lines	Lineu	(may need to use :)
40	min-session-added	Amin	(100110 20, 11eeu to use 2)
42	max-sossion-added	Amay	(may need to use :)
42	max-session_addad	Alliax	(may need to use ?)
43	stddov-sossion-addod	Adov	(may need to use ?)
	modian-cossion-addod	Amod	(may need to use ?)
45	median-session-added	Amod	(may need to use () (round 20 nood to use 2)
40	min_sossion_dolotod	Alliou	(100110 20, 1100 10 050 ?)
47	max sossion dolotod		(may need to use ?)
40	max-session deleted	DilldX	(may need to use ?)
49	mean-session-deleted	Davg	(may need to use ?)

50	stddev-session-deleted	Ddev (may need to use ?)
51	median-session-deleted	Dmed (may need to use ?)
52	mode-session-deleted	Dmod (round 20, need to use ?)
53	min-session-changed	Cmin (may need to use ?)
54	max-session-changed	Cmax (may need to use ?)
55	mean-session-changed	Cave (may need to use ?)
56	stddev-session-changed	Cdev (may need to use ?)
57	median-session-changed	Cmed (may need to use ?)
58	mode-session-changed	Cmod (round 120. to use?)
59	number-sessions	Snum
60	total-session-time-minutes	Mtot
61	number-sessions-centered-hour0-3	S0003
62	number-sessions-centered-hour4-7	S0407
63	number-sessions-centered-hour8-11	S0811
64	number-sessions-centered-hour12-15	S1215
65	number-sessions-centered-hour16-19	S1619
66	number-sessions-centered-hour20-23	s2023
67	mean-compete-csc-projects-assign	Xasn
68	mean-compete-csc-projects-due	Xdue
69	mean-compete-exams	Xams
70	number-builds-started	Bsta
71	number-builds-completed	Bend
72	number-tests-unix-started	Tstx
73	number-tests-unix-completed	Tenx
74	number-tests-pc-started	Tstp (Tests on student's machine.)
75	number-tests-pc-completed	Tenp (Tests on student's machine.)
76	total-tests-started	Tstb (Both Unix & PC test starts.)
77	total-tests-completed	Tenb (Both Unix & PC test end.)
78	post-turnitin-make-actions	Ptis
79	clued-emails	Eyes
80	clueless-emails	Enot
81	total-emails	Etot
82	grade point average at start	Cumg
83	number credits at start semester	Crdg
84	grade point average in csc >= 125	Cumm
85	number credits in csc >= 125	Crdm
86	course-numeric-grade	Gcrs
87	course-letter-grade	Glet
88	project-numeric-grade	Gprj
89	project-letter-bin	Gplt (3 bands per grade)
90	course-percentile-grade	GcrsRank
91	project-percentile-grade	GprjRank

NOTES:

1. Any attribute containing ? as a value in this dataset can and probably should be discarded on initial analysis. Find the grey cells in Weka's EDIT window. That includes mode attributes, because there is not always an unambiguous mode. It includes line data (lines changed/added/deleted), and surveys (because of survey data collection errors), and probably others.

2. Of the string data, studentid should be removed, and the others should be nominalized using filter StringToNominal.

3. Attributes GCrs, Glet and GCrsRank are redundant with each other, giving different views of the same data. You can keep at most one at a time, or the algorithms will infer one from the others. Gprj, Gplt and GprjRank are the same for the project. GCrsRank and GprjRank are numeric centile ranks for the course and project respectively. They may be the very useful since they expand clumped grade concentrations, and can be Discretized into (10?) bins for J48, NaiveBayes and other classifiers requiring nominal targets.

4. Looking back through the spring csc243 dataset with Weka in September, I am surprised to see OneR outperforming J48 in various basic investigations. Apparently, J48 is being confused by ambiguous data. I don't remember that from my quick look this summer.

5. One approach is to use OneR to the find the most use predictive attribute, remove that attribute, then see what the second-most predictive attribute is, then remove that. This approach will give you a set of perhaps up to 10 of the most predictive attributes. Then you can throw out all the others, keep those 10, and use more powerful algorithms such as J48, NaiveBayes or M5P / M5Rules on those attributes to see how they fare. The number 10 is just a guess. Too few means throwing away too much data; too many become hard to interpret.

6. My final suggestion for now is to see what you can use to predict Gplt, and Gprj, GprjRank, and a Discretized GprjRank, one at a time. Gplt and a Discretized GprjRank are nominal and therefore amenable to OneR, J48, NaiveBayes and RandomTree. Gprj and GprjRank are numeric and therefore amenable to M5P, M5Rules, and SimpleKMeans clustering (among others). Creating enough clusters to show at least 4 different grade levels in the target attribute actually looks like it might be useful.

7. May 16, 2014 added Jfst which is Jstr - 24 hours * number of days skipped work between the start and the final turnitin.