
Kutztown University Kutztown University

Research Commons at Kutztown University Research Commons at Kutztown University

Computer Science and Information Technology
Faculty

Computer Science and Information Technology
Department

7-24-2014

Using Weka to Mine Temporal Work Patterns of Programming Using Weka to Mine Temporal Work Patterns of Programming

Students Students

Dale E. Parson
Kutztown University, parson@kutztown.edu

Follow this and additional works at: https://research.library.kutztown.edu/cisfaculty

 Part of the Data Science Commons

Recommended Citation Recommended Citation
Tutorial notes presented at The 2014 International Conference on Frontiers in Education: Computer
Science and Computer Engineering (FECS’14), Las Vegas, July 21-24.

This Conference presentation is brought to you for free and open access by the Computer Science and Information
Technology Department at Research Commons at Kutztown University. It has been accepted for inclusion in
Computer Science and Information Technology Faculty by an authorized administrator of Research Commons at
Kutztown University. For more information, please contact czerny@kutztown.edu.

https://research.library.kutztown.edu/
https://research.library.kutztown.edu/cisfaculty
https://research.library.kutztown.edu/cisfaculty
https://research.library.kutztown.edu/cis
https://research.library.kutztown.edu/cis
https://research.library.kutztown.edu/cisfaculty?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=research.library.kutztown.edu%2Fcisfaculty%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:czerny@kutztown.edu

Using Weka to Mine Temporal Work Patterns of Programming Students

Dale E. Parson, Kutztown University of PA, http://faculty.kutztown.edu/parson

Follow-up to “Mining Student Time Management Patterns in Programming Projects”

Dale E. Parson and Allison Seidel, FECS’14 (#FEC2189)
http://faculty.kutztown.edu/parson/FECS2014ParsonTutorial.zip

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/book.html

1. Examine a typical programming project directory, makefile, and logdata.sh script.

See FECS2014ParsonTutorial/FillWord4/ makefile and logdata.sh.

2. Run CLASSPATH=.. make build test and examine the zipfile & datamine/.

Note that the mv command moves a zip file to the instructor’s inbox every time a
student runs make [build | test | turnitin]. Much of the later data extraction
works with multiple zipfiles from multiple make actions, e.g., constructing a
picture of a “work session” from multiple make invocations. (A “session” consists
of one or more make invocations with no gaps >= 60 minutes.)

Alternative run ./buildunix.sh && ./rununix.sh or buildwindows.bat,
runwindows.bat to build without a makefile, used for build & test on a student
machine. This step creates and appends data to data_do_not_lose_this_file.txt.

3. Run python worktimeToARFF.py 1 prjdata.csv fakegrades.csv surveys.csv
emaildata.csv fakearff.arff ./fakemine FillWord4/

Use Python 2.7.X. Here are the contents of the demo CSV files:

prjdata.csv
##cour,seme,prjn,start,end
csc243,sp2014,1,2014-02-10 00:01,2014-02-28 23:59
csc243,sp2014,2,2014-02-27 00:01,2014-03-16 23:59
csc243,sp2014,3,2014-03-13 00:01,2014-04-05 23:59
csc243,sp2014,4,2014-04-10 00:01,2014-04-19 23:59
csc243,sp2014,5,2014-04-20 00:01,2014-05-03 23:59

Course, semester, project number, start datetime, end datetime

fakegrades.csv
##suem,suid,Gprj1,Gprj2,Gprj3,ignore,ignore,Gprj4,Gprj5,ignore,ignore,Gcrs,Gle
t,yea,trk,Cumg,Crdg,Cumm,Crdm

parson,c243s14id1,1.02,1,0.97,0,0.97,1.02,1.05,0.9,0.85,0.9572,A,Sophomore,U
GRD Liberal Arts & Science - BS CSC/INFO TECHNOLOGY,3.82,45,3.67,21

 See schema_STUDENT_PRJ_WORK.txt. Fake data out of grading spreadsheet.

 surveys.csv

##suem,prjn,Xasn,Xdue,Xams
parson,1,1,2,3

Project number, count of competing CS assignments handed out, due, and any
competing exam.

 emaildata.csv

##suem,prjn,clue,count
parson,4,0,1
parson,4,1,2

Email to instructor. The clue field is 0 for clueless emails, 1 for emails with good
student understanding.

fakearff.arff is the output ARFF file.

./fakemine contains the mined ZIP files.

FillWord4/is the initial handout directory.

Notes from worktimeToARFF.py:

Mac/OSX datetime strings are incompatible. Linux & Solaris are OK.

__seconds_between_sessions__ = 3600 # Set to interval separating sessions.
__mode_session_time_minutes_quantum__ = 15
__mode_session_bytes_quantum__ = 1000
__mode_session_lines_quantum__ = 20
__diff_quantum__ = 20

Next pattern depends on the course's source language.
__src_re__ = re.compile(r'^.*\.java$')
Next pattern cracks apart fields in 'ls -l' while maintaining compatibility
with both Solaris & Linux, as far as I can tell. Assumes strip() off of ends.
Group 1 is bytes, 2 is month, 3 is day, 4 is time, 5 is filename.
__ls_re__ = re.compile(r'^\S+\s+\d+\s+\S+\s+\S+\s+(\d+)\s+([A-Z][a-
z]+)\s+(\d+)\s+(\d+:\d+)\s+(\S+)$')
MAY 14, 2014 change __ls_re__ to account for a platform where a student
got an ls with a year instead of hours:minute. Assume we can get either.

__ls_re__ = re.compile(r'^\S+\s+\d+\s+\S+\s+\S+\s+(\d+)\s+([A-Z][a-
z]+)\s+(\d+)\s+(\d+(:\d+)?)\s+(\S+)$')

4. Run python addrank.py fakearff.arff to get the centile rankings.

5. Run ./wekacmd.sh fakearff.arff.tmp.arff to inspect the fake data.

6. Open demoStudentDB.arff to inspect some data prepared for the tutorial.

This dataset is a fake dataset prepped for the demo.

7. Discuss Preprocessing (StringToNominal and date removal), Select attributes,
redundant attributes, analyses for a numeric target attribute (Simple K-means,
M5Rule and M5P tree), discretizing and analyses for nominal target attributes
(OneR, J48, naiveBayes).

schema_STUDENT_PRJ_WORK.txt

 1 studentid suid
 2 student-year syea (Sophomore, Junior, Senior)
 3 student-track strk (SD or IT or OT for other)
 4 course cour
 5 semester seme
 6 project-number prjn
 7 project-start-datetime prjs
 8 project-end-datetime prje
 9 assigned-until-started-hours Hstr (round to nearest hour)
10 completed-until-due-hours Hend (round to nearest hour)
11 started-until-due-hours Jstr (round to nearest hour)
12 Jstr - hours lost to skipped days Jfst (Jstr - 24 * each skip)
13 assigned-until-completed-hours Jend (round to nearest hour)
14 started-until-completed-hours Jall (round to nearest hour)
15 min-session-time-minutes Mmin (session gap of >= 60 mins)
16 max-session-time-minutes Mmax
17 mean-session-time-minutes Mavg
18 stddev-session-time-minutes Mdev
19 median-session-time-minutes Mmed
20 mode-session-time-minutes Mmod (round to nearest 15)
21 mean-time-between-sessions-hours Havg
22 stddev-time-between-sessions Hdev
23 min-session-files Fmin
24 max-session-files Fmax
25 mean-session-files Favg
26 stddev-session-files Fdev
27 median-session-files Fmed
28 mode-session-files Fmod
29 min-session-bytes Ymin
30 max-session-bytes Ymax
31 mean-session-bytes Yavg
32 stddev-session-bytes Ydev
33 median-session-bytes Ymed
34 mode-session-bytes Ymod (round to nearest 1000)
35 min-session-lines Lmin (may need to use ?)
36 max-session-lines Lmax (may need to use ?)
37 mean-session-lines Lavg (may need to use ?)
38 stddev-session-lines Ldev (may need to use ?)
39 median-session-lines Lmed (may need to use ?)
40 mode-session-lines Lmod (round 20, need to use ?)
41 min-session-added Amin (may need to use ?)
42 max-session-added Amax (may need to use ?)
43 mean-session-added Aavg (may need to use ?)
44 stddev-session-added Adev (may need to use ?)
45 median-session-added Amed (may need to use ?)
46 mode-session-added Amod (round 20, need to use ?)
47 min-session-deleted Dmin (may need to use ?)
48 max-session-deleted Dmax (may need to use ?)
49 mean-session-deleted Davg (may need to use ?)

50 stddev-session-deleted Ddev (may need to use ?)
51 median-session-deleted Dmed (may need to use ?)
52 mode-session-deleted Dmod (round 20, need to use ?)
53 min-session-changed Cmin (may need to use ?)
54 max-session-changed Cmax (may need to use ?)
55 mean-session-changed Cavg (may need to use ?)
56 stddev-session-changed Cdev (may need to use ?)
57 median-session-changed Cmed (may need to use ?)
58 mode-session-changed Cmod (round 120, to use ?)
59 number-sessions Snum
60 total-session-time-minutes Mtot
61 number-sessions-centered-hour0-3 S0003
62 number-sessions-centered-hour4-7 S0407
63 number-sessions-centered-hour8-11 S0811
64 number-sessions-centered-hour12-15 S1215
65 number-sessions-centered-hour16-19 S1619
66 number-sessions-centered-hour20-23 S2023
67 mean-compete-csc-projects-assign Xasn
68 mean-compete-csc-projects-due Xdue
69 mean-compete-exams Xams
70 number-builds-started Bsta
71 number-builds-completed Bend
72 number-tests-unix-started Tstx
73 number-tests-unix-completed Tenx
74 number-tests-pc-started Tstp (Tests on student's machine.)
75 number-tests-pc-completed Tenp (Tests on student's machine.)
76 total-tests-started Tstb (Both Unix & PC test starts.)
77 total-tests-completed Tenb (Both Unix & PC test end.)
78 post-turnitin-make-actions Ptis
79 clued-emails Eyes
80 clueless-emails Enot
81 total-emails Etot
82 grade point average at start Cumg
83 number credits at start semester Crdg
84 grade point average in csc >= 125 Cumm
85 number credits in csc >= 125 Crdm
86 course-numeric-grade Gcrs
87 course-letter-grade Glet
88 project-numeric-grade Gprj
89 project-letter-bin Gplt (3 bands per grade)
90 course-percentile-grade GcrsRank
91 project-percentile-grade GprjRank

NOTES:
1. Any attribute containing ? as a value in this dataset can and probably should be
discarded on initial analysis. Find the grey cells in Weka's EDIT window. That includes
mode attributes, because there is not always an unambiguous mode. It includes line data
(lines changed/added/deleted), and surveys (because of survey data collection errors),
and probably others.

2. Of the string data, studentid should be removed, and the others should be nominalized
using filter StringToNominal.

3. Attributes Gcrs, Glet and GcrsRank are redundant with each other, giving different
views of the same data. You can keep at most one at a time, or the algorithms will infer
one from the others. Gprj, Gplt and GprjRank are the same for the project. GcrsRank and
GprjRank are numeric centile ranks for the course and project respectively. They may be
the very useful since they expand clumped grade concentrations, and can be Discretized
into (10?) bins for J48, NaiveBayes and other classifiers requiring nominal targets.

4. Looking back through the spring csc243 dataset with Weka in September, I am surprised
to see OneR outperforming J48 in various basic investigations. Apparently, J48 is being
confused by ambiguous data. I don't remember that from my quick look this summer.

5. One approach is to use OneR to the find the most use predictive attribute, remove that
attribute, then see what the second-most predictive attribute is, then remove that. This
approach will give you a set of perhaps up to 10 of the most predictive attributes. Then
you can throw out all the others, keep those 10, and use more powerful algorithms such as
J48, NaiveBayes or M5P / M5Rules on those attributes to see how they fare. The number 10
is just a guess. Too few means throwing away too much data; too many become hard to
interpret.

6. My final suggestion for now is to see what you can use to predict Gplt, and Gprj,
GprjRank, and a Discretized GprjRank, one at a time. Gplt and a Discretized GprjRank are
nominal and therefore amenable to OneR, J48, NaiveBayes and RandomTree. Gprj and GprjRank
are numeric and therefore amenable to M5P, M5Rules, and SimpleKMeans clustering (among
others). Creating enough clusters to show at least 4 different grade levels in the target
attribute actually looks like it might be useful.

7. May 16, 2014 added Jfst which is Jstr - 24 hours * number of days skipped
work between the start and the final turnitin.

	Using Weka to Mine Temporal Work Patterns of Programming Students
	Recommended Citation

	FEC2189ParsonTutorialFECS2014

