A Skolem sequence can be thought of as a labelled path where any two vertices with the same label are that distance apart. This concept has naturally been generalized to graph labelling. This brings rise to the question; “what is the smallest set of consecutive positive integers we can use to properly Skolem label a graph?” This is known as the Skolem number of the graph. In this paper we give the Skolem number for three natural vertex induced subgraphs of the triangular lattice graph.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.