Graph packing and partitioning problems have been studied in many contexts, including from the algorithmic complexity perspective. Consider the packing problem of determining whether a graph contains a spanning tree and a cycle that do not share edges. Bernáth and Király proved that this decision problem is NP-complete and asked if the same result holds when restricting to planar graphs. Similarly, they showed that the packing problem with a spanning tree and a path between two distinguished vertices is NP-complete. They also established the NP-completeness of the partitioning problem of determining whether the edge set of a graph can be partitioned into a spanning tree and a (not-necessarily spanning) tree. We prove that all three problems remain NP-complete even when restricted to planar graphs.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.